Question 12.7: (a) Construct the density matrix for an electron that is eit...

(a) Construct the density matrix for an electron that is either in the state spin up along x (with probability 1/3) or in the state spin down along y (with probability 2/3).

(b) Find \left\langle S_{y}\right\rangle for the electron in (a).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Example 12.1, the density matrix for an electron in the state spin up along x is

\rho_{x+}=\left(\begin{array}{ll} 1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 \end{array}\right) ;

from Problem 12.5 the density matrix for an electron in the state spin down along y is

\rho_{y-}=\left(\begin{array}{cc} 1 / 2 & i / 2 \\ -i / 2 & 1 / 2 \end{array}\right) .

Therefore the density matrix for the state in question is

\rho=\frac{1}{3} \rho_{x+}+\frac{2}{3} \rho_{y-}=\left(\begin{array}{cc} 1 / 2 & 1 / 6+i / 3 \\ 1 / 6-i / 3 & 1 / 2 \end{array}\right) .

(b) From Equation 4.147,

S _{x}=\frac{\hbar}{2}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \quad S _{y}=\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)                (4.147).

S _{y}=\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) .

so

\left\langle S_{y}\right\rangle=\operatorname{Tr}\left(\rho S _{y}\right)=\frac{\hbar}{2} \operatorname{Tr}\left[\left(\begin{array}{cc} 1 / 2 & 1 / 6+i / 3 \\ 1 / 6-i / 3 & 1 / 2 \end{array}\right)\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)\right]=\frac{\hbar}{2} \operatorname{Tr}\left(\begin{array}{cc} i / 6-1 / 3 & -i / 2 \\ i / 2 & -i / 6-1 / 3 \end{array}\right) .

=\frac{\hbar}{2}\left(\frac{i}{6}-\frac{1}{3}-\frac{i}{6}-\frac{1}{3}\right)=\frac{\hbar}{2}\left(-\frac{2}{3}\right)=-\frac{\hbar}{3} .

Related Answered Questions