Question 4.19: A crane hook having an approximate trapezoidal cross-section...

A crane hook having an approximate trapezoidal cross-section is shown in Fig. 4.66. It is made of plain carbon steel 45C8 \left(S_{y t}=380 N / mm ^{2}\right)  and the factor of safety is 3.5. Determine the load carrying capacity of the hook.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } S_{y t}=380 N / mm ^{2} \quad(f s)=3.5 .

b_{i}=90 mm \quad b_{o}=30 mm \quad h=120 mm .

R_{o}=170 mm \quad R_{i}=50 mm .

Step I Calculation of permissible tensile stress

\sigma_{\max }=\frac{S_{y t}}{(f s)}=\frac{380}{3.5}=108.57 N / mm ^{2} .

Step II Calculation of eccentricity (e)
For the cross-section XX [Eqs (4.62) and (4.63)],

R_{N}=\frac{\left(\frac{b_{i}+b_{o}}{2}\right) h}{\left(\frac{b_{i} R_{o}-b_{o} R_{i}}{h}\right) \log _{e}\left(\frac{R_{o}}{R_{i}}\right)-\left(b_{i}-b_{o}\right)}             (4.62).

R=R_{i}+\frac{h\left(b_{i}+2 b_{o}\right)}{3\left(b_{i}+b_{o}\right)}             (4.63).

R_{N}=\frac{\left(\frac{b_{i}+b_{o}}{2}\right) h}{\left(\frac{b_{i} R_{o}-b_{o} R_{i}}{h}\right) \log _{e}\left(\frac{R_{o}}{R_{i}}\right)-\left(b_{i}-b_{o}\right)} .

R_{N}=\frac{\left(\frac{90+30}{2}\right)(120)}{\left(\frac{90 \times 170-30 \times 50}{120}\right) \log _{e}\left(\frac{170}{50}\right)-(90-30)} .

= 89.1816 mm.

R=R_{i}+\frac{h\left(b_{i}+2 b_{o}\right)}{3\left(b_{i}+b_{o}\right)} .

=50+\frac{120(90+2 \times 30)}{3(90+30)}=100 mm .

e=R-R_{N}=100-89.1816=10.8184 mm .

Step III Calculation of bending stress

h_{i}=R_{N}-R_{i}=89.1816-50=39.1816 mm .

A=\frac{1}{2}\left[h\left(b_{i}+b_{o}\right)\right]=\frac{1}{2}[(120)(90+30)] .

=7200 mm ^{2} .

M_{b}=P R=(100 P) N – mm .

From Eq. (4.56), the bending stress at the inner fibre is given by,

\sigma_{b i}=\frac{M_{b} h_{i}}{A e R_{i}}             (4.56).

\sigma_{b i}=\frac{M_{b} h_{i}}{A e R_{i}}=\frac{(100 P)(39.1816)}{(7200)(10.8184)(50)} .

=\frac{(7.2435) P}{(7200)} N / mm ^{2}             (i).

Step IV Calculation of direct tensile stress

\sigma_{t}=\frac{P}{A}=\frac{P}{(7200)} N / mm ^{2}               (ii).

Step V Calculation of load carrying capacity
Superimposing the two stresses and equating the resultant to permissible stress, we have

\sigma_{b i}+\sigma_{t}=\sigma_{\max } .

\frac{(7.2435) P}{7200}+\frac{P}{7200}=108.57 .

P = 94 827.95 N.

Related Answered Questions