Question 11.12: A crystal consists of a honeycomb lattice. It is invariant u...

A crystal consists of a honeycomb lattice. It is invariant under a rotation of angle θ = π/6 in the horizontal plane around the vertical axis. This means that the physical properties of the crystal are the same after such a rotation. Show that the symmetric thermal conductivity tensor κ is written in components as,

\kappa = \Biggl(\begin{matrix} κ_⊥ & 0 & 0 \\ 0 & κ_⊥ & 0 \\ 0 &0 & κ_⊥ \end{matrix} \Biggr)

where \kappa _\parallel is the thermal conductivity along the vertical rotation axis and \kappa _\bot is the thermal conductivity in the horizontal plane of rotation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The symmetric thermal conductivity tensor κ can be written in components as,

\kappa = \Biggl(\begin{matrix} κ_{11} & κ_{12} & κ_{13} \\ κ_{12} & κ_{22} & κ_{23} \\ κ_{13} & κ_{23} & κ_{33} \end{matrix} \Biggr) .

The rotation matrix \Re_θ describing a rotation of angle θ = π/6 in the horizontal plane around the vertical axis that leaves the thermal conductivity tensor invariant and its inverse \Re^{−1}_θ read,

\Re _\theta = \frac{1}{2} \Biggl(\begin{matrix} 1 & -\sqrt{3} & 0 \\ \sqrt{3} & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \Biggr) .

and

\Re^{-1} _\theta = \Re _\theta = \frac{1}{2}\Biggl(\begin{matrix} 1 & \sqrt{3} & 0\\ -\sqrt{3} & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \Biggr)  .

Since the physical properties of the crystal are invariant under the rotation \Re _\theta , we rotate Fourier’s law (11.26) by an angle θ,

j_Q = −κ (s, n_A, q) ·∇ T .                           (11.26)

\Re _\theta · j_Q = −\Re _\theta · κ ·∇T = −\Re _\theta · κ · \Re _{-\theta} · \Re _\theta ·∇T .

where \Re _{-\theta} · \Re _\theta = 1 Since Fourier’s law (11.26) is invariant under such a rotation,

\Re _\theta · j_Q = j_Q                              and                    \Re _\theta ·∇T = ∇T

and

\Re _\theta · κ · \Re _{-\theta} = κ           or          \Re _\theta · κ = κ · \Re _\theta

which is written in components as,

\Biggl(\begin{matrix} 1 & -\sqrt{3} & 0 \\\sqrt{3} & 1 & 0 \\ 0 & 0 & 1\end{matrix} \Biggr) \Biggl(\begin{matrix} κ_{11} & κ_{12} &κ_{13} \\ κ_{12} & κ_{22} & κ_{23} \\ κ_{13} &κ_{23} & κ_{33} \end{matrix} \Biggr)  = \Biggl(\begin{matrix} κ_{11} & κ_{12} &κ_{13} \\ κ_{12} & κ_{22} & κ_{23} \\ κ_{13} &κ_{23} & κ_{33} \end{matrix} \Biggr)  \Biggl(\begin{matrix} 1 & -\sqrt{3} & 0 \\\sqrt{3} & 1 & 0 \\ 0 & 0 & 1\end{matrix} \Biggr)

The solutions of this matrix system are,

κ_{12} = κ_{13} = κ_{23} =0      and          κ_{11} = κ_{22}

With the identifications,

κ_\parallel= κ_{33}                 and              κ_⊥ = κ_{11} = κ_{22}

the thermal conductivity tensor κ reduces to,

κ = \Biggl(\begin{matrix} κ_⊥ & 0 & 0 \\ 0 & κ_⊥ & 0 \\ 0 & 0 & \kappa _\parallel \end{matrix} \Biggr).

Related Answered Questions