Question 5.62: A cylindrical bronze sleeve (2) is held in compression again...

A cylindrical bronze sleeve (2) is held in compression against a rigid machine wall by a high-strength steel bolt (1) as shown in Figure P5.62. The steel [E = 200 GPa; α = 11.7 × 10610^{-6}/°C] bolt has a diameter of 25 mm. The bronze [E = 105 GPa; α = 22.0 × 10610^{-6}/°C] sleeve has an outside diameter of 75 mm, a wall thickness of 8 mm, and a length of L = 350 mm. The end of the sleeve is capped by a rigid washer with a thickness of t = 5 mm. At an initial temperature of T1T_{1} = 8°C, the nut is hand-tightened on the bolt until the bolt, washers, and sleeve are just snug, meaning that all slack has been removed from the assembly but no stress has yet been induced. If the assembly is heated to T2T_{2} = 80°C, calculate:
(a) the normal stress in the bronze sleeve.
(b) the normal strain in the bronze sleeve.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD cut through the assembly. Sum forces in the horizontal direction to obtain:

ΣFx=F1+F2=0F1=F2\Sigma F_{x}=F_{1}+F_{2}=0 \quad \therefore F_{1}=-F_{2}                                     (a)

Geometry-of-deformation relationship
For this configuration, the deformations of both members will be equal; therefore,

δ1=δ2\delta_{1}=\delta_{2}                                          (b)

Force-Temperature-Deformation Relationships
The relationship between internal force, temperature change, and deformation of an axial member can be stated for members (1) and (2):

δ1=F1L1A1E1+α1ΔTL1δ2=F2L2A2E2+α2ΔTL2\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}                                   (c)

Compatibility Equation
Substitute the force-deformation relationships (c) into the geometry of deformation relationship (b) to derive the compatibility equation:

F1L1A1E1+α1ΔTL1=F2L2A2E2+α2ΔTL2\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}                                (d)

Problem Data:
For this assembly, the areas, lengths, coefficients of thermal expansion, and elastic moduli are given below:

A1=π4(25 mm)2=490.8739 mm2A2=π4[(75mm)2(59 mm)2]=1,683.8937 mm2L1=355 mmL2=350 mmE1=200,000 MPaE2=105,000 MPaα1=11.7×106/Cα2=22.0×106/C\begin{array}{ll}A_{1}=\frac{\pi}{4}(25  mm )^{2}=490.8739  mm ^{2} & A_{2}=\frac{\pi}{4}\left[(75 mm )^{2}-(59  mm )^{2}\right]=1,683.8937  mm ^{2} \\L_{1}=355  mm & L_{2}=350  mm \\E_{1}=200,000  MPa & E_{2}=105,000  MPa \\\alpha_{1}=11.7 \times 10^{-6} /{ }^{\circ} C & \alpha_{2}=22.0 \times 10^{-6} /{ }^{\circ} C\end{array}

Solve the Equations
Substitute Eq. (a) into Eq. (d):

F2L1A1E1+α1ΔTL1=F2L2A2E2+α2ΔTL2F2[L1A1E1+L2A2E2]=[α1L1α2L2]ΔTF2=α1L1α2L2L1A1E1+L2A2E2ΔT\begin{aligned}-\frac{F_{2} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1} &=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2} \\F_{2}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}\right] &=\left[\alpha_{1} L_{1}-\alpha_{2} L_{2}\right] \Delta T \\F_{2} &=\frac{\alpha_{1} L_{1}-\alpha_{2} L_{2}}{\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}} \Delta T\end{aligned}

and solve for F2F_{2}:

F2=[(11.7×106/C)(360 mm)(22.0×106/C)(350 mm)355 mm(490.8739 mm2)(200,000 N/mm2)+350 mm(1,683.8937 mm2)(105,000 N/mm2)](72C)F_{2}= \left [ \frac{\left(11.7 \times 10^{-6} /{ }^{\circ} C \right)(360  mm )-\left(22.0 \times 10^{-6} /{ }^{\circ} C \right)(350  mm )}{\frac{355  mm }{\left(490.8739  mm ^{2}\right)\left(200,000  N / mm ^{2}\right)}+\frac{350  mm }{\left(1,683.8937  mm ^{2}\right)\left(105,000  N / mm ^{2}\right)}} \right ] \left(72^{\circ} C \right)

=-45,634.2064 N

(a) Normal stress in bronze shell.
The normal stress in the bronze shell is:

σ2=F2A2=45,634.2064 N1,683.8937 mm2=27.1004 MPa=27.1 MPa(C)\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-45,634.2064  N }{1,683.8937  mm ^{2}}=-27.1004  MPa =27.1  MPa ( C )

(b) Normal strain in bronze shell.
The normal strain can easily be found from the force-deformation relationship.

ε2=δ2L2=F2A2E2+α2ΔT=45,634.2064 N(1,683.8937 mm2)(105,000 N/mm2)+(22.0×106/C)(72C)=1,325.9×106 mm/mm=1,326 με\begin{aligned}\varepsilon_{2} &=\frac{\delta_{2}}{L_{2}}=\frac{F_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T \\&=\frac{-45,634.2064  N }{\left(1,683.8937  mm ^{2}\right)\left(105,000  N / mm ^{2}\right)}+\left(22.0 \times 10^{-6} /{ }^{\circ} C \right)\left(72{ }^{\circ} C \right) \\&=1,325.9 \times 10^{-6}  mm / mm \\&=1,326  \mu \varepsilon\end{aligned}

 

5.62'

Related Answered Questions