Question 13.85: (a) Determine the kinetic energy per unit mass which a missi...

(a) Determine the kinetic energy per unit mass which a missile must have after being fired from the surface of the earth if it is to to reach an infinite distance from the earth. (b) What is the initial velocity of the missile (called the escape velocity)? Give your answers in SI units and show that the answer to part b is independent of the firing angle.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

At the surface of the earth,                         g = 9.81 m/s²

r1=R=6370 km=6.37×106 mr_1=R=6370 \ km =6.37 \times 10^6  m

Centric force at the surface of the earth,

F=mg=GMmR2GM=gR2=(9.81)(6.37×106)2=398.06×1012 m3/s2\begin{aligned}F & =m g=\frac{G M m}{R^2} \\G M & =g R^2=(9.81)\left(6.37 \times 10^6\right)^2=398.06 \times 10^{12}  m ^3 / s ^2\end{aligned}

Let position 1 be on the surface of the earth (r1=R)\left(r_1=R\right) = and position 2 be at r2=ODr_2=O D . Apply the conservation of energy principle.

T1+V1=T2+V212mν12GMmr1=12mν22+GMmr2T1=T2+GMmRGMmT1m=T2m+GMR=T2m+gR\begin{aligned}& T_1+V_1=T_2+V_2 \\& \frac{1}{2} m ν_1^2-\frac{G M m}{r_1}=\frac{1}{2} m ν_2^2+\frac{G M m}{r_2} \\& T_1=T_2+\frac{G M m}{R}-\frac{G M m}{\infty} \\& \frac{T_1}{m}=\frac{T_2}{m}+\frac{G M}{R}=\frac{T_2}{m}+g R\end{aligned}

For the escape condition set T2m=0\quad \quad \frac{T_2}{m}=0

T1m=gR=(9.81 m/s2)(6.37×106 m)=62.49×106 m2/s2\frac{T_1}{m}=g R=\left(9.81 \ m / s ^2\right)\left(6.37 \times 10^6  m \right)=62.49 \times 10^6  m ^2 / s ^2 

(a) T1m=62.5 MJ/kg\quad \quad \quad \quad \quad \quad \quad \quad \quad \frac{T_1}{m}=62.5 \ MJ / kg \blacktriangleleft

12mνesc2=grνesc=2gR\begin{aligned}& \frac{1}{2} m \nu_{ esc }^2=g r \\& \nu_{ esc }=\sqrt{2 g R}\end{aligned}

(b) νesc=(2)(9.81)(6.37×106)=11.18×103 m/sνesc=11.18 km/s\quad \quad \quad\nu_{ esc }=\sqrt{(2)(9.81)\left(6.37 \times 10^6\right)}=11.18 \times 10^3  m / s \quad \nu_{ esc }=11.18 \ km / s \blacktriangleleft

Note that the escape condition depends only on the speed in position 1 and is independent of the direction of the velocity (firing angle).

Related Answered Questions