Question 6.185: A device brings 2 kg of ammonia from 150 kPa, -20°C to 400 k...

A device brings 2 kg of ammonia from 150 kPa, -20°C to 400 kPa, 80°C in a polytropic process. Find the polytropic exponent, n, the work and the heat transfer. Find the total entropy generated assuming a source at 100°C.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Ammonia of constant mass m_{2}=m_{1}=m out to source.

Energy Eq.3.5:                m \left( u _{2}- u _{1}\right)={ }_{1} Q _{2}-{ }_{1} W _{2}

Entropy Eq.6.37:            m \left( s _{2}- s _{1}\right)=\int d Q / T +{ }_{1} S _{2  gen }={ }_{1} Q _{2} / T +{ }_{1} S _{2  gen}

Process:    {P _{1} v _{1}}^{ n }={ P _{2} v _{2}}^{ n }        Eq. (8.27)

State 1: Table B.2.2

v _{1}=0.79774   m ^{3} / kg , \quad s _{1}=5.7465   kJ / kg  K ,    u _{1}=1303.3   kJ / kg

State 2: Table B.2.2

v _{2}=0.4216   m ^{3} / kg , \quad s _{2}=5.9907   kJ / kg  K , \quad u _{2}=1468.0   kJ / kg

 

\begin{aligned}& \ln \left( P _{2} / P _{1}\right)=\ln \left( v _{1} / v _{2}\right)^{ n }= n \times \ln \left( v _{1} / v _{2}\right) \\& \ln \left(\frac{400}{150}\right)= n \times \ln \left(\frac{0.79774}{0.4216}\right)=0.98083= n \times 0.63773 \\\Rightarrow \quad & n = 1 . 5 3 8\end{aligned}

 

The work term is integration of PdV as done in text leading to Eq.6.29

 

\begin{aligned}{ }_{1} W _{2}=& \frac{ m }{1- n }\left( P _{2} v _{2}- P _{1} v _{1}\right) \\&=\frac{2}{1-1.538} \times(400 \times 0.4216-150 \times 0.79774)=-182 . 8   k J\end{aligned}

 

Notice we did not use Pv = RT as we used the ammonia tables.

{ }_{1} Q _{2}= m \left( u _{2}- u _{1}\right)+{ }_{1} W _{2}=2(1468-1303.3)-182.08= 1 4 7 . 3 ~ k J

From Eq.6.37

\begin{aligned}{ }_{1} S _{2  gen}  &= m \left( s _{2}- s _{1}\right)-{ }_{1} Q _{2} / T =2(5.9907-5.7465)-\frac{147.3}{373.15} \\&= 0 . 0 9 3 6   kJ / K\end{aligned}

Notice:
n = 1.54, k = 1.3
n > k

…………………………………

Eq.3.5: E_{2}-E_{1}={ }_{1} Q_{2}-{ }_{1} W_{2}

Eq.6.37 : S_{2}-S_{1}=\int_{1}^{2} d S=\int_{1}^{2} \frac{\delta Q}{T}+{ }_{1} S_{2 gen}

Eq.8.27 : \phi =(e−T_{0}s+ P_{0}v)−(e_{0} −T_{0}s_{0} + P_{0}v_{0})

Eq.6.29 :
\begin{aligned}{ }_{1} W_{2} &=\int_{1}^{2} P d V=\text { constant } \int_{1}^{2} \frac{d V}{V^{n}} \\&=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}\end{aligned}

 

1
1
2

Related Answered Questions