Question 4.32: (a) Find the eigenvalues and eigenspinors of Sy . (b) If you...

(a) Find the eigenvalues and eigenspinors of S_y .

(b) If you measured S_y on a particle in the general state χ (Equation 4.139), what values might you get, and what is the probability of each? Check that the probabilities add up to 1. Note: a and b need not be real!

\chi=\left(\begin{array}{l} a \\ b \end{array}\right)=a \chi_{+}+b \chi    (4.139).

(c) If you measured S_{y}^{2} what values might you get, and with what probabilities?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) ; \quad\left|\begin{array}{cc} -\lambda & -i \hbar / 2 \\ i \hbar / 2 & -\lambda \end{array}\right|=\lambda^{2}-\frac{\hbar^{2}}{4} \Rightarrow \lambda=\pm \frac{\hbar}{2}   (of course).

\frac{\hbar}{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)\left(\begin{array}{l} \alpha \\ \beta \end{array}\right)=\pm \frac{\hbar}{2}\left(\begin{array}{l} \alpha \\ \beta \end{array}\right) \Rightarrow-i \beta=\pm \alpha ; \quad|\alpha|^{2}+|\beta|^{2}=1 \Rightarrow|\alpha|^{2}+|\alpha|^{2}=1 \Rightarrow \alpha=\frac{1}{\sqrt{2}} .

\chi_{+}^{(y)}=\frac{1}{\sqrt{2}}\left(\begin{array}{l} 1 \\ i \end{array}\right) ; \quad \chi_{-}^{(y)}=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 1 \\ -i \end{array}\right) .

(b)

c_{+}=\left(\chi_{+}^{(y)}\right)^{\dagger} \chi=\frac{1}{\sqrt{2}}(1-i)\left(\begin{array}{l} a \\ b \end{array}\right)=\frac{1}{\sqrt{2}}(a-i b) ; \quad+\frac{\hbar}{2}, \text { with probability } \frac{1}{2}|a-i b|^{2} .

c_{-}=\left(\chi_{-}^{(y)}\right)^{\dagger} \chi=\frac{1}{\sqrt{2}}(1 i)\left(\begin{array}{l} a \\ b \end{array}\right)=\frac{1}{\sqrt{2}}(a+i b) ; \quad-\frac{\hbar}{2}, \text { with probability } \frac{1}{2}|a+i b|^{2} .

P_{+}+P_{-}=\frac{1}{2}\left[\left(a^{*}+i b^{*}\right)(a-i b)+\left(a^{*}-i b^{*}\right)(a+i b)\right] .

=\frac{1}{2}\left[|a|^{2}-i a^{*} b+i a b^{*}+|b|^{2}+|a|^{2}+i a^{*} b-i a b^{*}+|b|^{2}\right]=|a|^{2}+|b|^{2}=1 .

(c) \frac{\hbar^{2}}{4}, \text { with probability } 1 .

Related Answered Questions