Question 5.P.5: (a) Find the eigenvalues and eigenstates of the spin operato...

(a) Find the eigenvalues and eigenstates of the spin operator \vec{S} of an electron in the direction of a unit vector \vec{n}, where \vec{n} is arbitrary.

(b) Find the probability of measuring \vec{S}_{z} =-\hbar/2.

(c) Assuming that the eigenvectors of the spin calculated in (a) correspond to t = 0, find these eigenvectors at time t.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)We need to solve

\vec{n}.\vec{S}|\lambda〉 =\frac{\hbar }{2} \lambda |\lambda 〉,                    (5.233)

where \vec{n}, a unit vector pointing along an arbitrary direction, is given in spherical coordinates by

\vec{n}=(\sin \theta \cos \varphi )\vec{i}+(\sin \theta \sin \varphi )\vec{j}+(\cos \theta )\vec{k},                 (5.234)

with 0\leq \theta \leq \pi and 0\leq \varphi \leq 2\pi . We can thus write

\vec{n}.\vec{S}=(\sin \theta \cos \varphi \vec{i}+\sin \theta \sin \varphi \vec{j}+\cos \theta \vec{k}).(S_{x}\vec{i}+ S_{y}\vec{j} +S_{z} \vec{k})

 

=S_{x}\sin \theta \cos \varphi +S_{y}\sin \theta \sin \varphi +S_{z}\cos \theta .                                     (5.235)

Using the spin matrices, we can write this equation in the following matrix form:

\vec{n}.\vec{S}=\frac{\hbar }{2} \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right) \sin \theta \cos \varphi +\frac{\hbar }{2} \left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right)\sin \theta \sin \varphi+\frac{\hbar }{2} \left(\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right)\cos \theta

 

=\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & \sin \theta (\cos \varphi -i\sin \varphi ) \\ \sin \theta (\cos \varphi +i\sin \varphi ) & -\cos \theta \end{matrix} \right)

 

=\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & e^{-i\varphi }\sin \theta \\ e^{i\varphi }\sin \theta & -\cos \theta \end{matrix} \right).                                                      (5.236)

Diagonalization of this matrix leads to the secular equation

-\frac{\hbar ^{2} }{4} (\cos \theta -\lambda )(\cos \theta +\lambda )-\frac{\hbar ^{2} }{4}\sin ^{2} \theta =0,                (5.237)

which in turn leads to the eigenvalues λ = ±1.
The eigenvector corresponding to λ = 1 can be obtained from

\frac{\hbar }{2}\left(\begin{matrix} \cos \theta & e^{-i\varphi }\sin \theta \\ e^{i\varphi }\sin \theta & -\cos \theta \end{matrix} \right)\left(\begin{matrix} a \\ b \end{matrix} \right) =\frac{\hbar }{2}\left(\begin{matrix} a \\ b \end{matrix} \right),           (5.238)

which leads to

a\cos \theta +be^{-i\varphi }\sin \theta =a                           (5.239)

or

a(1-\cos \theta )=be^{-i\varphi }\sin \theta.                    (5.240)

Using the relations 1-\cos \theta =2\sin ^{2} \frac{1}{2}\theta and \sin \theta =2\cos \frac{1}{2}\theta \sin \frac{1}{2}\theta, we have

b=a\tan \frac{1}{2}\theta e^{i\varphi }.                        (5.241)

Combining this equation with the normalization condition \left| a\right| ^{2}+\left|b\right| ^{2} =1, we obtain a=\cos \frac{1}{2}\theta and b=e^{i\varphi }\sin \frac{1}{2}\theta. Thus, the eigenvector corresponding to λ = 1 is

|\lambda _{+} 〉=\left(\begin{matrix} \cos (\theta /2) \\ e^{i\varphi }\sin (\theta /2) \end{matrix} \right) .               (5.242)

A similar treatment leads to the eigenvector for λ = -1:

|\lambda _{-} 〉=\left(\begin{matrix} -\sin (\theta /2) \\ e^{i\varphi }\cos (\theta /2) \end{matrix} \right) .                    (5.243)

(b) Write |\lambda _{-} 〉 of (5.243) in terms of \left|{\frac{1}{2},\frac{1}{2}}\right\rangle =\left(\begin{matrix} 1 \\ 0 \end{matrix} \right) and \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle=\left(\begin{matrix} 0 \\ 1 \end{matrix} \right):

|\lambda _{+} 〉=\cos \frac{1}{2}\theta \left|{\frac{1}{2},\frac {1}{2}}\right\rangle+e^{i\varphi } \sin \frac{1}{2} \theta \left|{\frac {1}{2},-\frac{1}{2}}\right\rangle,               (5.244)

|\lambda _{-} 〉=-\sin \frac{1}{2}\theta \left|{\frac{1}{2},\frac {1}{2}}\right\rangle+e^{i\varphi }\cos \frac{1}{2}\theta \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle.                    (5.245)

We can then obtain the probability of measuring \hat{S}_{z} =-\hbar /2:

\left|\left\langle \frac{1}{2},-\frac{1}{2}| \lambda _{-} \right \rangle \right| ^{2}=\cos ^{2} \frac{1}{2}\theta .          (5.246)

(c) The spin’s eigenstates at time t are given by

|\lambda _{+}(t) 〉=e^{-iE_{+}t/\hbar }\cos \frac{1}{2}\theta \left|{\frac{1}{2},\frac{1}{2}}\right\rangle+e^{i(\varphi -E-t/\hbar )} \sin \frac{1}{2} \theta \left|{\frac{1}{2},-\frac{1}{2}}\right\rangle ,             (5.247)

|\lambda _{-}(t) 〉=-e^{-iE_{+}t/\hbar }\sin \frac{1}{2} \theta \left|{\frac{1}{2},\frac{1}{2}}\right\rangle+e^{i(\varphi -E-t/\hbar )}\cos \frac{1}{2}\theta\left|{\frac{1}{2},-\frac{1}{2}}\right\rangle ,              (5.248)

where E_{\pm }are the energy eigenvalues corresponding to the spin-up and spin-down states, respectively.

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...