Question 1.10.11: (a) Find the Fourier transform for Φ(k) = {A(a - |k|), |k| ≤...

(a) Find the Fourier transform for \phi (k)= \begin{cases} A(a-|k|) & |k|\leq a, \\ 0, & |k|\gt a. \end{cases}

where a is a positive parameter and A is a normalization factor to be found.

(b) Calculate the uncertainties Δx and Δp and check whether they satisfy the uncertainty principle.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The normalization factor A can be found at once:

1=\int_{-\infty }^{+\infty }{|\phi (k)|^2dk=|A|^2\int_{-a}^{0}{(a+k)^2dk+|A|^2} }\int_{0}^{a}{(a-k)^2dk}

 

=2|A|^2\int_{0}^{a}{(a-k)^2dk}=2|A|^2\int_{0}^{a}{(a^2-2ak+k^2)}dk

 

=\frac{2a^3}{3}|A|^2,             (1.197)

which yields A=\sqrt{3/(2a^3)} .    The shape of \phi (k)=\sqrt{3/(2a^3)}(a-|k| )   is displayed in Figure 1.18.

Now, the Fourier transform of \phi (k)  is

\psi _0(x)=\frac{1}{\sqrt{2\pi } }\int_{-\infty }^{+\infty }{\phi (k)}e^{ikx}dk

 

=\frac{1}{\sqrt{2\pi } }\sqrt{\frac{3}{2a^3} }\left[\int_{-a }^{0 }(a+k)e^{ikx}dk+\int_{0 }^{a }(a-k)e^{ikx}dk\right]

 

=\frac{1}{\sqrt{2\pi } }\sqrt{\frac{3}{2a^3} }\left[\int_{-a }^{0 }ke^{ikx}dk-\int_{0 }^{a }ke^{ikx}dk+a\int_{-a }^{a }e^{ikx}dk\right] .                (1.198)

Using the integrations

\int_{-a }^{0 }ke^{ikx}dk=\frac{a}{ix}e^{-iax} +\frac{1}{x^2}\left(1-e^{-iax}\right) ,              (1.199)

 

\int_{0 }^{a }ke^{ikx}dk=\frac{a}{ix}e^{iax} +\frac{1}{x^2}\left(e^{iax}-1\right) ,                (1.200)

 

\int_{-a }^{a }e^{ikx}dk=\frac{1}{ix}\left(e^{iax}-e^{-iax}\right)=\frac{2\sin (ax)}{x} ,                   (1.201)

and after some straightforward calculations, we end up with

\psi _0(x)=\frac{4}{x^2}\sin ^2 \left(\frac{ax}{2} \right).                (1.202)

As shown in Figure 1.18, this wave packet is localized: it peaks at x = 0 and decreases gradually as x increases. We can verify that the maximum of \psi _0(x)  occurs at x = 0; writing  \psi _0(x)  as  a^2(ax/2)^{-2}\sin ^2(ax/2)  and since \lim _{x\rightarrow 0}\sin (bx)/(bx)\rightarrow 1,  we obtain \psi _0(0)=a^2.

(b) Figure 1.18a is quite suggestive in defining the half-width of \phi (k):\Delta k=a  (hence the momentum uncertainty is \Delta p=\hbar a).  By defining the width as \Delta k=a,  we know with full certainty that the particle is located between -a\leq k\leq a;  according to Figure 1.18a, the probability of finding the particle outside this interval is zero, for \phi (k)  vanishes when |k|\gt a.

Now, let us find the width \Delta x  of  \psi _0(x).  since  \sin (a\pi /2a)=1,\psi _0(\pi /a)=4a^2/\pi ^2,  and  that  \psi _0(0)=a^2,  we can obtain from (1.202) that \psi _0(\pi /a)=4a^2/\pi ^2=4/\pi ^2\psi _0(0),   or

\frac{\psi _0(\pi /a)}{\psi _0(0)}=\frac{4}{\pi ^2}.            (1.203)

This suggests that \Delta x=\pi /a:  when  x=\pm \Delta x=\pm \pi /a   the wave packet \psi _0(x)  drops to 4/\pi ^2   from its maximum value \psi _0(0)=a^2.  In sum, we have \Delta x=\pi /a  and  \Delta k =a;   hence

\Delta x \Delta k= \pi               (1.204)

or

\Delta x \Delta p= \pi \hbar ,            (1.205)

since \Delta k= \Delta p / \hbar .  In addition to satisfying Heisenberg’s uncertainty principle (1.57) \Delta x\Delta p_x\geq \frac{\hbar }{2}, \Delta y\Delta p_y\geq \frac{\hbar }{2} ,\Delta z\Delta p_z\geq \frac{\hbar }{2}. ,  this relation shows that the product \Delta x \Delta p  is higher than \hbar/2:\Delta x\Delta p\gt \hbar/2.   The wave packet (1.202) therefore offers a clear illustration of the general statement outlined above; namely, only Gaussian wave packets yield the lowest limit to Heisenberg’s uncertainty principle \Delta x\Delta p= \hbar/2  (see (1.114)) \Delta x\Delta p= \frac{\hbar}{2}. . All other wave packets, such as (1.202), yield higher values for the product \Delta x \Delta p.

8

Related Answered Questions