Question : (a) Find the rest energy of a proton in electron volts

(a) Find the rest energy of a proton in electron volts

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
E_{R} =m_{p} c^{2}=\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} =\left(1.50 \times 10^{-10} \mathrm{~J}\right)\left(1.00 \mathrm{eV} / 1.60 \times 10^{-19} \mathrm{~J}\right) =938 \mathrm{MeV}

 

(b) If the total energy of a proton is three times its rest energy, with what speed is the proton moving?

Solution Equation 39.25 gives

E=3 m_{p} c^{2} =\frac{m_{p} c^{2}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}{\sqrt{1-\frac{u^{2}}{c^{2}}}}

 

Solving for u gives

1-\frac{u^{2}}{c^{2}} =\frac{1}{9} \frac{u^{2}}{c^{2}} =\frac{8}{9} u=\frac{\sqrt{8}}{3} c=2.88 \times 10^{8} \mathrm{~m} / \mathrm{s}

 

(c) Determine the kinetic energy of the proton in electron volts.

Solution From Equation 39.24

K=E-m_{p} c^{2}=3 m_{p} c^{2}-m_{p} c^{2}=2 m_{p} c^{2}

Because m_{p} c^{2}=938 \mathrm{MeV}, K=1880 \mathrm{MeV}

 

(d) What is the proton’s momentum?

Solution We can use Equation 39.26 to calculate the momentum with E=3 m_{p} c^{2}

E^{2} =p^{2} c^{2}+\left(m_{p} c^{2}\right)^{2}=\left(3 m_{p} c^{2}\right)^{2} p^{2} c^{2} =9\left(m_{p} c^{2}\right)^{2}-\left(m_{p} c^{2}\right)^{2}=8\left(m_{p} c^{2}\right)^{2} \phi =\sqrt{8} \frac{m_{p} c^{2}}{c}=\sqrt{8} \frac{(938 \mathrm{MeV})}{c}=2650 \mathrm{MeV} / c

The unit of momentum is written \mathrm{MeV} / c for convenience.