Question 7.P.4: (a) Find the total spin of a system of three spin 1/2 partic...

(a) Find the total spin of a system of three spin \frac{1}{2} particles and derive the corresponding Clebsch–Gordan coefficients.

(b) Consider a system of three nonidentical spin \frac{1}{2} particles whose Hamiltonian is given by \hat{H}=-\epsilon _{0} (\vec{S} _{1} .\vec{S} _{3}+\vec{S} _{2} .\vec{S} _{3} )/\hbar ^{2} . Find the system’s energy levels and their degeneracies.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) To add j_{1} =\frac{1}{2} ,j_{2} =\frac{1}{2}, and j_{3} =\frac{1}{2}, we begin by coupling j_{1} and j_{2} to form j_{12} =j_{1} +j_{2} , where \left|j_{1} -j_{2} \right| \leq j_{12} \leq \left|j_{1} +j_{2} \right| ; hence j_{12} =0,1. Then we add j_{12} and j_{3} ; this leads to \left |j_{12} -j_{3} \right| \leq j \leq \left|j_{12} +j_{3} \right| or j=\frac{1}{2} ,\frac{3}{2} .

We are going to denote the joint eigenstates of \hat{\vec{J} }^{2}_{1} ,\hat{\vec{J} }^{2}_{2} ,\hat{\vec{J} }^{2}_{3} ,\hat{\vec{J} }^{2}_{12} ,\hat{\vec{J} }^{2} , and J_{z} by |j_{12} ,j,m 〉 and the joint eigenstates of \hat{\vec{J} }^{2}_{1} ,\hat{\vec{J} }^{2}_{2} ,\hat{\vec{J} }^{2}_{3} \hat{J} _{1_{z} } ,\hat{J} _{2_{z} } , and \hat{J} _{3_{z} } by |j_{1},j_{2},j_{3};m_{1} ,m_{2},m_{3} 〉; since j_{1}=j_{2}=j_{3}=\frac{1}{2} and m_{1}=\pm \frac{1}{2} ,m_{2}=\pm \frac{1}{2} ,m_{3}=\pm \frac{1}{2}, we will be using throughout this
problem the lighter notation |j_{1},j_{2},j_{3};\pm ,\pm ,\pm 〉 to abbreviate |\frac{1}{2} ,\frac{1}{2} ,\frac{1}{2} ;\pm \frac{1}{2} ,\pm \frac{1}{2} ,\pm \frac{1}{2} 〉.

In total there are eight states |j_{12} ,j,m 〉 since (2j_{1}+1)(2j_{2}+1)(2j_{3}+1)=8. Four of these correspond to the subspace j=\frac{3}{2} ;|1,\frac{3}{2} ,\frac{3}{2} 〉,|1,\frac {3}{2} ,\frac{1}{2} 〉,|1,\frac{3}{2} ,-\frac{1}{2} 〉, and |1,\frac{3}{2} ,-\frac{3}{2} 〉. The remaining four belong to the subspace j=\frac{1}{2} :|0,\frac{1}{2} ,\frac{1}{2} 〉,|0,\frac{1}{2} ,-\frac{1}{2} 〉,|1,\frac{1}{2} ,\frac{1}{2} 〉, |1,\frac{1}{2} ,-\frac{1}{2} 〉. To construct the states |j_{12} ,j,m 〉 in terms of |j_{1},j_{2},j_{3};\pm ,\pm ,\pm 〉, we are going to consider the two subspaces j=\frac{3}{2} and j=\frac{1}{2} separately.

Subspace j=\frac{3}{2}

First, the states |1,\frac{3}{2} ,\frac{3}{2} 〉 and |1,\frac{3}{2} ,-\frac{3}{2} 〉 are clearly given by

|1,\frac{3}{2} ,\frac{3}{2} 〉=|j_{1},j_{2},j_{3};+ ,+ ,+ 〉,         |1,\frac{3}{2} ,-\frac{3}{2} 〉=|j_{1},j_{2},j_{3};- ,- ,- 〉.        (7.372)

To obtain |1,\frac{3}{2} ,\frac{1}{2} 〉, we need to apply, on the one hand, \hat{J}_{-} on |1,\frac{3}{2} ,\frac{3}{2} 〉 (see (7.220)),

\hat{J}_{\pm }|j_{12} ,j,m 〉=\hbar \sqrt{j(j+1)-m(m\pm 1)} |j_{12} ,j,m \pm 1〉,                    (7,220)

 

\hat{J}_{-}|1,\frac{3}{2} ,\frac{3}{2} 〉=\hbar \sqrt{\frac{3}{2}\left(\frac{3}{2}+1\right) -\frac{3}{2}\left(\frac{3}{2}-1\right) } |1,\frac{3}{2} ,\frac{1}{2} 〉=\hbar \sqrt{3} |1,\frac{3}{2} ,\frac{1}{2} 〉,           (7.373)

and, on the other hand, apply (\hat{J}_{1-}+\hat{J}_{2-} +\hat {J}_{3-}) on |j_{1},j_{2},j_{3};+ ,+ ,+ 〉 (see (7.221) to (7.223)).

\hat{J}_{1_{\pm } }|j_{1},j_{2},j_{3};m_{1},m_{2},m_{3} 〉=\hbar \sqrt{j_{1}(j_{1}+1)-m_{1}(m_{1}\pm 1)} |j_{1},j_{2},j_{3};(m_{1}\pm 1),m_{2},m_{3} 〉 ,          (7.221)

 

\hat{J}_{2_{\pm } }|j_{1},j_{2},j_{3};m_{1},m_{2},m_{3} 〉=\hbar \sqrt{j_{2}(j_{2}+1)-m_{2}(m_{2}\pm 1)} |j_{1},j_{2},j_{3}; m_{1},(m_{2}\pm 1),m_{3} 〉 ,          (7.222)

 

\hat{J}_{3_{\pm } }|j_{1},j_{2},j_{3};m_{1},m_{2},m_{3} 〉=\hbar \sqrt{j_{3}(j_{3}+1)-m_{3}(m_{3}\pm 1)} |j_{1},j_{2},j_{3}; m_{1},m_{2},(m_{3}\pm 1) 〉 .         (7.223)

This yields

(\hat{J}_{1-}+\hat{J}_{2-}+\hat{J}_{3-})|j_{1},j_{2},j_{3};+ ,+ ,+ 〉=\hbar \left(|j_{1},j_{2},j_{3};- ,+ ,+ 〉+|j_{1},j_{2},j_{3};+ ,- ,+ 〉+|j_{1},j_{2},j_{3};+ ,+ ,- 〉\right) ,               (7.374)

since \sqrt{\frac{1}{2}(\frac{1}{2}+1)-\frac{1}{2}(\frac{1}{2}-1)} =1. Equating (7.373) and (7.374) we infer

|1,\frac{3}{2} ,\frac{1}{2} 〉=\frac{1}{\sqrt{3} } \left(|j_{1}, j_{2},j_{3};- ,+ ,+ 〉+|j_{1},j_{2},j_{3};+ ,- ,+ 〉+|j_{1},j_{2},j_{3};+ ,+ ,- 〉\right).         (7.375)

Following the same method—applying \hat{J}_{-} on |1,\frac{3}{2} ,\frac{1}{2} 〉 and (\hat{J}_{1-}+ \hat{J}_{2-}+\hat{J}_{3-}) on the right-hand side of (7.375) and then equating the two results—we find

|1,\frac{3}{2} ,-\frac{1}{2} 〉=\frac{1}{\sqrt{3} } \left(|j_{1}, j_{2},j_{3};+ ,-,- 〉+|j_{1},j_{2},j_{3};- ,+ ,- 〉+|j_{1},j_{2},j_{3};- ,- ,+ 〉\right).       (7.376)

Subspace j=\frac{1}{2}

We can write |0,\frac{1}{2} ,\frac{1}{2} 〉 as a linear combination of |j_{1},j_{2},j_{3};+ ,+ ,- 〉 and |j_{1},j_{2},j_{3};- ,+ ,+ 〉:

|0,\frac{1}{2} ,\frac{1}{2} 〉=\alpha |j_{1},j_{2},j_{3};+ ,+,- 〉+\beta |j_{1},j_{2},j_{3};- ,+,+ 〉.                (7.377)

Since |0,\frac{1}{2} ,\frac{1}{2} 〉 is normalized, while |j_{1},j_{2},j_{3};+ ,+ ,- 〉 and |j_{1},j_{2},j_{3};- ,+ ,+ 〉 are orthonormal, and since the Clebsch–Gordan coefficients, such as α and β, are real numbers, equation (7.377) yields

\alpha ^{2} +\beta ^{2} =1.                    (7.378)

On the other hand, since 〈1,\frac{3}{2} ,\frac{1}{2}|0,\frac{1}{2} ,\frac{1}{2} 〉=0, a combination of (7.375) and (7.377) leads to

\frac{1}{\sqrt{3} } (\alpha +\beta )=0\Longrightarrow \alpha =-\beta .                             (7.379)

A substitution of \alpha =-\beta into (7.378) yields \alpha =-\beta=1/\sqrt{2} , and substituting this into
(7.377) we obtain

|0,\frac{1}{2} ,\frac{1}{2} 〉=\frac{1}{\sqrt{2} } \left(|j_{1},j_{2} ,j_{3};+ ,- ,- 〉-|j_{1},j_{2},j_{3};- ,+ ,+ 〉\right) .                      (7.380)

Following the same procedure that led to (7.375)—applying \hat {J}_{-} on the left-hand side of (7.380) and (\hat{J}_{1-} +\hat{J}_{2-}+\hat{J}_{3-}) on the right-hand side and then equating the two results—we find

|0,\frac{1}{2} ,-\frac{1}{2} 〉=\frac{1}{\sqrt{2} } \left(-|j_{1}, j_{2},j_{3};+ ,- ,- 〉+|j_{1},j_{2},j_{3};- ,- ,+ 〉\right).                  (7.381)

Now, to find |0,\frac{1}{2} ,\frac{1}{2} 〉, we may write it as a linear combination of |j_{1},j_{2},j_{3};+ ,+ ,- 〉,|j_{1},j_{2} ,j_{3};+ ,- ,+ 〉, and |j_{1},j_{2},j_{3};- ,+ ,+ 〉:

|1,\frac{1}{2} ,\frac{1}{2} 〉=\alpha |j_{1},j_{2},j_{3};+ ,+ ,- 〉+\beta |j_{1},j_{2},j_{3};+ ,- ,+ 〉+\gamma |j_{1},j_{2},j_{3};- ,+ ,+ 〉.          (7.382)

This state is orthogonal to |0,\frac{1}{2} ,\frac{1}{2} 〉, and hence \alpha =\gamma ; similarly, since this state is also orthogonal to |1,\frac{3}{2} ,\frac{1}{2} 〉, we have \alpha +\beta +\gamma =0, and hence 2\alpha +\beta =0 or \beta =-2\alpha =-2\gamma .

Now, since all the states of (7.382) are orthonormal, we have \alpha ^{2} +\beta ^{2} +\gamma ^{2} =1, which when combined with \beta =-2\alpha =-2\gamma leads to \alpha =\gamma =-1/\sqrt{6} and \beta =2/ \sqrt{6} . We may thus write (7.382) as

|1,\frac{1}{2} ,\frac{1}{2} 〉=\frac{1}{\sqrt{6} } \left(-|j_{1}, j_{2},j_{3};+ ,+ ,- 〉+2|j_{1},j_{2},j_{3};+ ,- ,+ 〉-|j_{1},j_{2},j_{3} ;- ,+ ,+ 〉\right) .                (7.383)

Finally, applying \hat {J}_{-} on the left-hand side of (7.383) and (\hat{J}_{1-} +\hat{J}_{2-}+\hat{J}_{3-}) on the right-hand side and equating the two results, we find

|1,\frac{1}{2} ,-\frac{1}{2} 〉=\frac{1}{\sqrt{6} } \left(|j_{1}, j_{2},j_{3};+ ,- ,- 〉-2|j_{1},j_{2},j_{3};- ,+ ,- 〉+|j_{1},j_{2},j_{3} ;- ,- ,+ 〉\right) .         (7.384)

(b) Since we have three different (nonidentical) particles, their spin angular momenta mutually commute. We may thus write their Hamiltonian as \hat{H}=-(\epsilon _{0}/\hbar ^{2})(\hat {\vec{S} }_{1}+\hat{\vec{S} }_{2} ).\hat{\vec{S} }_{3}. Due
to this suggestive form of \hat{H}, it is appropriate, as shown in (a), to start by coupling \hat {\vec{S} }_{1} with \hat {\vec{S} }_{2} to obtain \hat{\vec{S} }_{12}= \hat{\vec{S} }_{1}+\hat{\vec{S} }_{2}, and then add \hat {\vec{S} }_{12} to \hat {\vec{S} }_{3} to generate the total spin: \hat{\vec{S} }=\hat{\vec{S} }_{12}+\hat {\vec{S} }_{3}. We may thus write \hat{H} as

\hat{H}=-\frac{\epsilon _{0}}{\hbar ^{2}} \left(\hat{\vec{S} }_{1}+\hat{\vec{S} }_{2}\right) .\hat{\vec{S} }_{3}=- \frac{\epsilon _{0}}{\hbar ^{2}}\hat{\vec{S} }_{12}.\hat{\vec{S} }_{3}=-\frac {\epsilon _{0}}{2\hbar ^{2}}\left(\hat{S}^{2}-\hat{S}^{2}_{12}- \hat{S}^{2}_{3} \right) ,         (7.385)

since \hat{\vec{S} }_{12}.\hat{\vec{S} }_{3}=\frac{1}{2}[(\hat{\vec{S} }_{12}+\hat{\vec{S} }_{3})^{2} -\hat{S}^{2}_{12}-\hat{S}^{2}_{3}]. Since the operators \hat{H},\hat {S}^{2},\hat{S}^{2}_{12} , and \hat{S}^{2}_{3} mutually commute, we may select as their joint eigenstates the kets |s_{12} ,s,m 〉; we have seen in (a) how to construct these states. The eigenvalues of \hat{H} are thus given by

\hat{H}|s_{12} ,s,m 〉=-\frac{\epsilon _{0}}{2\hbar ^{2}} \left(\hat{S}^{2}-\hat{S}^{2}_{12}-\hat{S}^{2}_{3}\right) |s_{12} ,s,m 〉

 

=-\frac{\epsilon _{0}}{2}\left[s(s+1)-s_{12}(s_{12}+1)-\frac{3}{4}\right]|s_{12} ,s,m 〉 ,                               (7.386)

since s_{3} =\frac{1}{2} and \hat{S}^{2}_{3} |s_{12} ,s,m 〉=\hbar ^{2}s_{3}(s_{3}+1) |s_{12} ,s,m 〉=(3\hbar ^{2}/4)|s_{12} ,s,m 〉 .

As shown in (7.386), the energy levels of this system are degenerate with respect to m, since they depend on the quantum numbers s and s_{12} but not on m:

E_{s_{12},s} =-\frac{\epsilon _{0}}{2}\left[s(s+1)-s_{12}(s_{12}+1)-\frac{3}{4}\right].                  (7.387)

For instance, the energy E_{s_{12},s} =E_{1,3/2} =-\epsilon _{0}/2 s fourfold degenerate, since it corresponds to four different states: |s_{12} ,s,m 〉=|1 ,\frac{3}{2},\pm \frac{3}{2} 〉 and |1 ,\frac{3}{2},\pm \frac{1}{2} 〉. Similarly, the energy E_{0,1/2} =0 is twofold degenerate; the corresponding states are |0 ,\frac{1}{2},\pm \frac{1}{2} 〉 .Finally, the energy E_{1,1/2} =\epsilon _{0} is also twofold degenerate since it corresponds to |1 ,\frac{1}{2},\pm \frac{1}{2} 〉.

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...