Question 7.5: A flame arrester is a heat storage, high melting temperature...

A flame arrester is a heat storage, high melting temperature, porous solid (also called filter) placed upstream of a gaseous premixed fuel-oxidant stream to cool the flame (i.e., to quench or extinguish it) and prevent it from reaching the fuel source during the flashback. A stainless steel 316 flame arrester element is intended for use with methane as the fuel and is shown in Figure (a), with the flashback flame passing through it. The arrester casing is not shown. During the travel through the arrester, the flame is extinguished. Treat the flow of hot stream as steady and assume a uniform solid temperature.
(a) Draw the thermal circuit diagram.
(b) Write the energy equation for the solid and by inspection show that T_{1}(t)=T_{f,\infty }+[T_{1}(t=0)-T_{f,\infty }]e^{-t/\tau _{1}}+a_{1}\tau _{1}(1-e^{-t/\tau _{1}}) applies to this problem.
(c) Determine the Nusselt number.
(d) Determine the NTU and \left\langle R_{u}\right\rangle _{L}.

(e) Using T_{1}(t)=T_{f,\infty }+[T_{1}(t=0)-T_{f,\infty }]e^{-t/\tau _{1}}+a_{1}\tau _{1}(1-e^{-t/\tau _{1}}) , determine the rise in the temperature of the flame arrester after an elapsed time t_{o}. Estimate the outlet temperature of the stream after an elapsed time t_{o}.

T_{s}(t = 0) = 40^{\circ }C      ,\left\langle T_{f}\right\rangle _{0} = 1,600^{\circ } C,    \dot{ M}_{ f} = 1.0 g/s      ,\epsilon = 0.25   , D = 3 cm     , L = 2 cm,     A_{ku} = 0.46 m^{2},    D_{p} = 0.2 mm    , t_{o} = 5 s.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Figure (b) shows the thermal circuit diagram.

(b) The energy equation for the solid, from Figure(b), is

\left\langle Q_{u}\right\rangle _{L-0}=-(\rho c_{p}V)_{s}\frac{dT_{s}(t)}{dt}

 

\frac{T_{s}-\left\langle T_{f}\right\rangle_{0}} {\left\langle R_{u}\right\rangle_{L} } =-(\rho c_{p}V)_{s}\frac{dT_{s}(t)}{dt}

The average convection resistance \left\langle R_{u}\right\rangle_{L} is defined in Table, i.e,

\left\langle R_{u}\right\rangle_{L}=\frac{1}{(\dot{M}c_{p})_{f}(1-e^{-NTU})}  

 

NTU=\frac{1}{\left\langle R_{ku}\right\rangle _{D}(\dot{M}c_{p})_{f}}

The energy equation is similar to Q\mid_{A,1}=Q_{1}+Q_{ku,1-\infty }=Q_{1}+\frac{T_{1}(t)-T_{f,\infty }}{\left\langle R_{ku}\right\rangle_{L  or  D} } =-(\rho c_{p}V)_{1}\frac{dT_{1}(t)}{dt}+\dot{S}_{1} , i.e., with Q_{s} and \dot{S}_{s} both equal to zero, then T_{1}(t)=T_{f,\infty }+[T_{1}(t=0)-T_{f,\infty }]e^{-t/\tau _{1}}+a_{1}\tau _{1}(1-e^{-t/\tau _{1}}) is the solution,

T_{s}(t)=\left\langle T_{f}\right\rangle_{0}+(T_{s}(t=0)-\left\langle T_{f}\right\rangle_{0} )e^{-t/\tau _{s}}

 

\tau _{s}=(\rho c_{p}V)_{s}\left\langle R_{u}\right\rangle _{L} 

(c) The Nusselt number for porous media is given in Table as

\left\langle Nu\right\rangle _{D,p}= 2 + (0.4Re^{1/2}_{ D,p} + 0.2Re^{2/3}_{ D,p} )Pr^{0.4} 

 

  Re_{D,p}=\frac{\rho _{f}\left\langle u_{f}\right\rangle D_{p} }{\mu _{f}(1-\epsilon )} =\frac{\dot{M}_{f}D_{p}}{A_{u}\mu _{f}(1-\epsilon )}

From Table, at T = 1,500 K, we have

\mu_{f} = ρ_{f} ν_{f} = 0.235(kg/m^{3}) × 2.29 × 10^{−4}(m^{2}/s) = 5.382 × 10^{−5} Pa-s          Table
k_{f} = 0.0870 W/m-K                                                                                           Table
c_{p} = 1,202 J/kg-K                                                                                                    Table
Pr = 0.70                                                                                                         Table
Then

Re_{D,p}=\frac{10^{−3} (kg/s) × 2 × 10^{−4} (m) }{\frac{π × (3 × 10^{−2} )^{2} (m^{2})}{4}× 5.382 × 10^{−5} (Pa-s)(1 − 0.25) }  

= 7.014

\left\langle Nu\right\rangle _{D,p}=2 + [0.4 × (7.014)^{1/2} + 0.2 × (7.014)^{2/3} ] × (0.7)^{0.4}

= 3.554.

(d) From Table, or from \left\langle Nu\right\rangle _{D,p}\equiv \frac{D_{p}}{A_{ku}\left\langle R_{ku}\right\rangle_{D,p}k_{f} } \left(\frac{\epsilon }{1-\epsilon } \right) , we have

\left\langle R_{ku}\right\rangle_{D}= \frac{D_{p}}{A_{ku}\left\langle Nu\right\rangle _{D,p}k_{f} } \left(\frac{\epsilon }{1-\epsilon } \right)  

Then

NTU=\frac{A_{ku}\left\langle Nu\right\rangle _{D,p}k_{f}(1-\epsilon )}{D_{p}\epsilon (\dot{M}c_{p})_{f}}

 

=\frac{0.46(m^{2}) × 3.554 × 0.0870(W/m-K) × (1 − 0.25)}{2 × 10^{−4} (m) × 0.25 × 10^{−3} (kg/s) × 1,202(J/kg-K)} = 1,775.

(e) The average convection resistance \left\langle R_{u}\right\rangle _{L}  is

\left\langle R_{u}\right\rangle _{L}=\frac{1}{(\dot{M}c_{p})_{f}(1-e^{-NTU})}

 

=\frac{1}{10^{−3}(kg/s) × 1,202(J/kg-K)(1 − e^{−1,775})} = 0.8319^{\circ }C/W.

The time constant \tau _{s} is

\tau _{s}=(\rho c_{p}V)_{s}\left\langle R_{u}\right\rangle_{L} = (\rho c_{p} )_{s}\left(\frac{\pi D^{2}}{4}L \right) (1-\epsilon )\left\langle R_{u}\right\rangle _{L}

where we have used the volume of the solid. From Table, for stainless steel 316, we have

stainless steel 316: \rho _{s}= 8,238 kg/s                                 Table

c_{p,s} = 486 J/kg-K                                                                     Table

Then

\tau _{s}= 8,238(kg/m^{3}) × 486(J/kg-K) × \frac{π × (3 × 10^{−2} )^{2}(m^{2} )}{4}× 2 × 10^{−2} (m)

 

× (1 − 0.25) × 0.8319(^{\circ }C/W) = 35.30 s.

Then

T_{s}(t = t_{o} = 5 s) = 1,600^{\circ } C + [40^{\circ }C − 1,600^{\circ }C]e^{−5/35.50} = 246.0^{\circ }C

The instantaneous fluid stream outlet temperature is determined from \frac{T_{s}-\left\langle T_{f}\right\rangle _{L}}{T_{s}-\left\langle T_{f}\right\rangle _{0}} =\frac{\left\langle T_{f}\right\rangle _{L}-T_{s}}{\left\langle T_{f}\right\rangle _{0}-T_{s}} =e^{-NTU}, i.e.,

\left\langle T_{f}\right\rangle _{L}(t = t_{o} = 5 s) = T_{s}(t) + [\left\langle T_{f}\right\rangle _{0} − T_{s}(t_{o})]e^{−NTU}

 

= 246.0(^{\circ }C) + [1,600(^{\circ }C) − 246.0(^{\circ }C)]e^{−1,775} = 246.0^{\circ }C.
b
Capture
q
7_5
22_1
7_4
16.2

Related Answered Questions