Question 17.3: A friction-drive stainless steel metal belt runs over two 4-...

A friction-drive stainless steel metal belt runs over two 4-in metal pulleys ( f = 0.35).
The belt thickness is to be 0.003 in. For a life exceeding 10610^{6} belt passes with smooth torque (KsK_{s}= 1), (a) select the belt if the torque is to be 30 lbf · in, and (b) find the initial tension FiF_{i} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From step 1, ϕ=θd\phi = θ_{d} = π, therefore exp(0.35π) = 3.00. From step 2,

(Sf)106=14.17(106)(106)0.407=51 210 psi(S_{f} )_{10^{6}} = 14.17(10^{6})(10^{6})^{−0.407} = 51  210  psi

From steps 3, 4, 5, and 6,

F1a=[51 21028(106)0.003(10.2852)4]0.003b=85.1b lbfF_{1a} =\left[ 51  210 −\frac{28(10^{6})0.003}{(1 − 0.285^{2})4}\right]0.003b =85.1b  lbf                     (1)

ΔF=2T/D=2(30)/4=15 lbfΔF = 2T/D = 2(30)/4 = 15  lbf
F2=F1aΔF=85.1b15 lbfF_{2} = F_{1a} − ΔF = 85.1b − 15  lbf                     (2)
Fi=F1a+F22=85.1b+152 lbfF_{i} =\frac{F_{1a} + F_{2}}{2} =\frac{85.1b + 15}{2}  lbf               (3)

From step 7,

bmin=ΔFaexp(f ϕ)exp(f ϕ)1=1585.13.003.001=0.264 inb_{min} =\frac{ΔF}{a} \frac{exp( f  \phi)}{exp( f  \phi) − 1} =\frac{15}{85.1} \frac{3.00}{3.00 − 1} = 0.264  in

Select an available 0.75-in-wide belt 0.003 in thick.

Eq. (1):                  F1=85.1(0.75)=63.8  F_{1} = 85.1(0.75) = 63.8 lbf
Eq. (2):                 F2=85.1(0.75)15=48.8   F_{2} = 85.1(0.75) − 15 = 48.8 lbf
Eq. (3):               Fi=(63.8+48.8)/2=56.3  F_{i} = (63.8 + 48.8)/2 = 56.3 lbf

f=1ϕlnF1F2=1πln63.848.8=0.0853f^{′} =\frac{1}{\phi} ln \frac{F_{1}}{F_{2}} =\frac{1}{π} ln \frac{63.8}{48.8} = 0.0853

Note f<ff^{′} < f , that is, 0.0853 < 0.35.

 

The selection of a metal flat belt can consist of the following steps:

1 Find exp( f ϕ\phi) from geometry and friction
2 Find endurance strength

Sf=14.17(106)Np0.407S_{f} = 14.17(10^{6})N^{−0.407}_{p}                      301, 302 stainless
Sf=Sy/3S_{f} = S_{y}/3                           others

3 Allowable tension

F1a=[SfEt(1ν2)D]tb=abF_{1a} =\left[ S_{f} −\frac{Et}{(1 − ν^{2})D}\right] tb = ab

4   ΔF=2T/DΔF = 2T/D
5    F2=F1aF=abΔFF_{2} = F_{1a} − F = ab − ΔF
6     Fi=F1a+F22=ab+abΔF2=abΔF2 F_{i} =\frac{F_{1a} + F_{2}}{2} =\frac{ab + ab − ΔF}{2} = ab − \frac{ΔF}{2}
7      bmin=ΔFaexp(fϕ)exp(fϕ)1b_{min} =\frac{ΔF}{a} \frac{exp( f \phi)}{exp( f \phi) − 1}
8      Choose b>bmin,F1=ab,F2=abΔF,Fi=abF/2,T=FD/2b > b_{min}, F_{1} = ab, F_{2} = ab − ΔF, F_{i} = ab − F/2, T = FD/2

Related Answered Questions