Question 17.3: A friction-drive stainless steel metal belt runs over two 4-...

A friction-drive stainless steel metal belt runs over two 4-in metal pulleys ( f = 0.35). The belt thickness is to be 0.003 in. For a life exceeding 10^{6} belt passes with smooth torque \left(K_{s}=1\right), (a) select the belt if the torque is to be 30 lbf · in, and (b) find the initial tension F_{i} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From step 1, \phi=\theta_{d}=\pi, therefore exp(0.35π) = 3.00. From step 2,

 

\left(S_{f}\right)_{10^{6}}=14.17\left(10^{6}\right)\left(10^{6}\right)^{-0.407}=51210 psi

 

From steps 3, 4, 5, and 6,

 

F_{1 a}=\left[51210-\frac{28\left(10^{6}\right) 0.003}{\left(1-0.285^{2}\right) 4}\right] 0.003 b=85.1 b lbf (1)

 

\Delta F=2 T / D=2(30) / 4=15 lbf

 

F_{2}=F_{1 a}-\Delta F=85.1 b-15 lbf (2)

 

F_{i}=\frac{F_{1 a}+F_{2}}{2}=\frac{85.1 b+15}{2} lbf (3)

 

From step 7,

 

b_{\min }=\frac{\Delta F}{a} \frac{\exp (f \phi)}{\exp (f \phi)-1}=\frac{15}{85.1} \frac{3.00}{3.00-1}=0.264 \text { in }

 

Select an available 0.75-in-wide belt 0.003 in thick.

Eq. (1):

 

F_{1}=85.1(0.75)=63.8 lbf

 

Eq. (2):

 

F_{2}=85.1(0.75)-15=48.8 lbf

 

Eq. (3):

 

F_{i}=(63.8+48.8) / 2=56.3 lbf

 

f^{\prime}=\frac{1}{\phi} \ln \frac{F_{1}}{F_{2}}=\frac{1}{\pi} \ln \frac{63.8}{48.8}=0.0853

 

Note f^{\prime} < f , that is, 0.0853 < 0.35.

Related Answered Questions