Question 24.6: A generally orthotropic ply is subjected to direct stresses ...

A generally orthotropic ply is subjected to direct stresses of 60 N / mm ^{2} parallel to the x reference axis and 40 N / mm ^{2} perpendicular to the x reference axis. If the longitudinal plies are inclined at an angle of 45^{\circ} to the x axis and the elastic constants are E_{l}=150,000 N / mm ^{2}, E_{t}=90,000 N / mm ^{2}, G_{l t}=5,000 N / mm ^{2} and ν_{l t}=0.3, calculate the direct strains parallel to the x and y directions and the shear strain referred to the xy axes.

Use MATLAB to repeat Example 24.6.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We note that there is no applied shear stress, so it is unnecessary to calculate the terms in the third column of the matrix of Eqs. (24.33). Then,

 

\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y}\\\gamma_{xy}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}s_{11}+n^{4} s_{22} & m^{2} n^{2} s_{11}+m^{2}n^{2}s_{22}&2m^{3}ns_{11}-2mn^{3}s_{22}\\+2m^{2}n^{2}s_{12}+m^{2}n^{2}s_{33}&+\left(m^{4}+n^{4}\right) s_{12} & +2\left(m n^{3}-m^{3} n\right) s_{12} \\m^{2} n^{2} s_{11}+m^{2} n^{2} s_{22} & -m^{2} n^{2} s_{33} & +\left(m n^{3}-m^{3} n\right) s_{33} \\+\left(m^{4}+n^{4}\right) s_{12} & n^{4} s_{11}+m^{4} s_{22} & 2 m n^{3} s_{11}-2 m^{3} n s_{22} \\-m^{2} n^{2}s_{33}&+2m^{2}n^{2}s_{12}+m^{2}n^{2}s_{33}&+2\left(m^{3} n-m n^{3}\right) s_{12} \\ & & +(m^3n-mn^3)s_{33} \\2 m^{3} n s_{11}-2 m n^{3} s_{22} & 2 m n^{3} s_{11}-2 m^{3} n s_{22} & 4 m^{2} n^{2} s_{11}+4 m^{2} n^{2} s_{22} \\+2\left(m n^{3}-m^{3} n\right)s_{12}&+2\left(m^{3} n-m n^{3}\right) s_{12} & -8 m^{2} n^{2} s_{12} \\+\left(m n^{3}-m^{3} n\right) s_{33} & +\left(m^{3} n-n m^{3}\right) s_{33} &+\left(m^{2}-n^{2}\right)^{2}s_{33}\end{array}\right]\left\{\begin{array}{c}\sigma_{x}\\\sigma_{y}\\\tau_{xy}\end{array}\right\}  (24.33)

 

s_{11}=\frac{1}{E_{l}}=\frac{1}{150,000}=6.7 \times 10^{-6}

 

s_{22}=\frac{1}{E_{t}}=\frac{1}{90,000}=11.1 \times 10^{-6}

 

s_{12}=-\frac{ν_{l t}}{E_{l}}=-\frac{0.3}{150,000}=-2.0 \times 10^{-6}

 

s_{33}=\frac{1}{G_{l t}}=\frac{1}{5,000}=200 \times 10^{-6}

 

Also,

 

\cos \theta=\sin \theta=\cos 45^{\circ}=1 / \sqrt{2}

 

so that

 

m^{2}=0.5=n^{2}, \quad m^{4}=n^{4}=0.25, \quad m^{2} n^{2}=0.25, and so forth Substituting these values in Eqs. (24.33), we have

 

\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y}\\\gamma_{xy}\end{array}\right\}=\left[\begin{array}{ccc}53.45 & -46.55 & – \\-46.55 & 53.45 & – \\-2.2 & -2.2 & -\end{array}\right]\left\{\begin{array}{c}60 \\40 \\0\end{array}\right\}

 

which gives

 

\varepsilon_{x}=1345 \times 10^{-6}

 

\varepsilon_{y}=-655 \times 10^{-6}

 

\gamma_{x y}=-220 \times 10^{-6}

 

The direct and shear strains are obtained through the following MATLAB file:

The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

% Declare any needed variables
sig_x=60;
sig_y=40;
tau_xy=0;
theta=45*pi/180;
E_l=150e3;
E_t=90e3;
G_lt=5e3;
v_lt=0.3;
% Calculate variables needed to obtain the desired strains
m=cos(theta);
n=sin(theta);
s_11=round(1/E_l*10^7)/(10^7);
s_12=round(-v_lt/E_l*10^7)/(10^7);
s_22=round(1/E_t*10^7)/(10^7);
s_33=round(1/G_lt*10^7)/(10^7);
a_11=m^4*s_11+n^4*s_22+2*m^2*n^2*s_12+m^2*n^2*s_33;
a_12=m^2*n^2*(s_11+s_22-s_33)+(m^4+n^4)*s_12;
a_13=2*m^3*n*s_11-2*m*n^3*s_22+2*(m*n^3-m^3*n)*s_12+(m*n^3-m^3*n)*s_33;
a_21=a_12;
a_22=n^4*s_11+m^4*s_22+2*m^2*n^2*s_12+m^2*n^2*s_33;
a_23=2*m*n^3*s_11-2*m^3*n*s_22+2*(m^3*n-m*n^3)*s_12+(m^3*n-m*n^3)*s_33;
a_31=a_13;

a_32=a_23;
a_33=4*m^2*n^2*(s_11+s_22)-8*m^2*n^2*s_12+(m^2-n^2)*s_33;
% Substitute these variables intoEq. (24.33)
A=[a_11 a_12 a_13;
a_21 a_22 a_23;
a_31 a_32 a_33];
b=[sig_x sig_y tau_xy]’;
strains=A*b;
% Output the direct and shear strains to the Command Window
disp([‘e_x=’ num2str(strains(1))])
disp([‘e_y=’ num2str(strains(2))])
disp([‘gamma_xy=’ num2str(strains(3))])

The Command Window outputs resulting from this MATLAB file are as follows:

e_x=0.001345
e_y=-0.000655
gamma_xy=-0.00022

Related Answered Questions