Given Pmax=150NPmin.=50Nd=3mm.
D=18mmSut=1430N/mm2.
Step I Mean and amplitude shear stresses
C=dD=318=6..
From Eq. (10.7) and (10.5),
K=4C−44C−1+C0.615 (10.7).
Ks=(1+C0.5) (10.5).
K=4C−44C−1+C0.615=4(6)−44(6)−1+60.615.
= 1.2525.
Ks=1+C0.5=1+60.5=1.0833.
Pm=21(Pmax.+Pmin.)=21(150+50)=100N.
Pa=21(Pmax.−Pmin.)=21(150−50)=50N.
From Eq. (10.18) and (10.19),
τm=Ks(πd38PmD) (10.18).
τa=K(πd38PaD) (10.19).
τm=Ks(πd38PmD)=(1.0833)(π(3)38(100)(18)).
=183.91N/mm2.
τa=K(πd38PaD)=(1.2525)(π(3)38(50)(18)).
=106.32N/mm2.
Step II Factor of safety
From. Eq. (10.21), the relationships for oil-hardened and tempered steel wires are as follows:
Ssy=0.45Sut (10.21).
Sse′=0.22Sut=0.22(1430)=314.6N/mm2.
Ssy=0.45Sut=0.45(1430)=643.5N/mm2.
From Eq. (10.22),
(fs)Ssy−τmτa=Ssy−21Sse′21Sse′ (10.22).
(fsSsy)−τmτa=Ssy−21Sse′21Sse′.
or (fs643.5)−183.91106.32=643.5−21(314.6)21(314.6).
(fs643.5)−183.91106.32=486.2157.3.
(fs)643.5−183.91=157.3106.32(486.2)=328.63.
(fs)643.5=183.91+328.63.
(fs) = 1.26.