Question 10.13: A helical compression spring of a cam-mechanism is subjected...

A helical compression spring of a cam-mechanism is subjected to an initial preload of 50 N. The maximum operating force during the load cycle is 150 N. The wire diameter is 3 mm, while the mean coil diameter is 18 mm. The spring is made of oil-hardened and tempered valve spring wire of Grade-VW (Sut=1430N/mm2) \left(S_{u t}=1430 N / mm ^{2}\right) . Determine the factor of safety used in the design on the basis of fluctuating stresses.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 Given Pmax=150NPmin.=50Nd=3mm \text { Given } P_{\max }=150 N \quad P_{\min .}=50 N \quad d=3 mm .

D=18mmSut=1430N/mm2 D=18 mm \quad S_{u t}=1430 N / mm ^{2} .

Step I Mean and amplitude shear stresses

C=Dd=183=6 C=\frac{D}{d}=\frac{18}{3}=6 ..

From Eq. (10.7) and (10.5),

K=4C14C4+0.615C K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}               (10.7).

Ks=(1+0.5C) K_{s}=\left(1+\frac{0.5}{C}\right)                         (10.5).

K=4C14C4+0.615C=4(6)14(6)4+0.6156 K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}=\frac{4(6)-1}{4(6)-4}+\frac{0.615}{6} .

= 1.2525.

Ks=1+0.5C=1+0.56=1.0833 K_{s}=1+\frac{0.5}{C}=1+\frac{0.5}{6}=1.0833 .

Pm=12(Pmax.+Pmin.)=12(150+50)=100N P_{m}=\frac{1}{2}\left(P_{\max .}+P_{\min .}\right)=\frac{1}{2}(150+50)=100 N .

Pa=12(Pmax.Pmin.)=12(15050)=50N P_{a}=\frac{1}{2}\left(P_{\max .}-P_{\min .}\right)=\frac{1}{2}(150-50)=50 N .

From Eq. (10.18) and (10.19),

τm=Ks(8PmDπd3) \tau_{m}=K_{s}\left(\frac{8 P_{m} D}{\pi d^{3}}\right)           (10.18).

τa=K(8PaDπd3) \tau_{a}=K\left(\frac{8 P_{a} D}{\pi d^{3}}\right)                       (10.19).

τm=Ks(8PmDπd3)=(1.0833)(8(100)(18)π(3)3) \tau_{m}=K_{s}\left(\frac{8 P_{m} D}{\pi d^{3}}\right)=(1.0833)\left(\frac{8(100)(18)}{\pi(3)^{3}}\right) .

=183.91N/mm2 =183.91 N / mm ^{2} .

τa=K(8PaDπd3)=(1.2525)(8(50)(18)π(3)3) \tau_{a}=K\left(\frac{8 P_{a} D}{\pi d^{3}}\right)=(1.2525)\left(\frac{8(50)(18)}{\pi(3)^{3}}\right) .

=106.32N/mm2 =106.32 N / mm ^{2} .

Step II Factor of safety
From. Eq. (10.21), the relationships for oil-hardened and tempered steel wires are as follows:

Ssy=0.45Sut S_{s y}=0.45 S_{u t}                     (10.21).

Sse=0.22Sut=0.22(1430)=314.6N/mm2 S_{s e}^{\prime}=0.22 S_{u t}=0.22(1430)=314.6 N / mm ^{2} .

Ssy=0.45Sut=0.45(1430)=643.5N/mm2 S_{s y}=0.45 S_{u t}=0.45(1430)=643.5 N / mm ^{2} .

From Eq. (10.22),

τaSsy(fs)τm=12SseSsy12Sse \frac{\tau_{a}}{\frac{S_{s y}}{\left(f_{s}\right)}-\tau_{m}}=\frac{\frac{1}{2} S_{s e}^{\prime}}{S_{s y}-\frac{1}{2} S_{s e}^{\prime}}                     (10.22).

τa(Ssyfs)τm=12SseSsy12Sse \frac{\tau_{a}}{\left(\frac{S_{s y}}{f s}\right)-\tau_{m}}=\frac{\frac{1}{2} S_{s e}^{\prime}}{S_{s y}-\frac{1}{2} S_{s e}^{\prime}} .

 or 106.32(643.5fs)183.91=12(314.6)643.512(314.6) \text { or } \frac{106.32}{\left(\frac{643.5}{f s}\right)-183.91}=\frac{\frac{1}{2}(314.6)}{643.5-\frac{1}{2}(314.6)} .

106.32(643.5fs)183.91=157.3486.2 \frac{106.32}{\left(\frac{643.5}{f s}\right)-183.91}=\frac{157.3}{486.2} .

643.5(fs)183.91=106.32(486.2)157.3=328.63 \frac{643.5}{(f s)}-183.91=\frac{106.32(486.2)}{157.3}=328.63 .

643.5(fs)=183.91+328.63 \frac{643.5}{(f s)}=183.91+328.63 .

(fs) = 1.26.

Related Answered Questions