\text { Given } P_{\min .}=375 N \quad \tau_{\max .}=750 N / mm ^{2} .
D_{o}=42 mm .
Step I Wire diameter
For minimum weight,
P_{\max .}=2 P_{\min .}=2(375)=750 N .
Assuming the outer diameter to be 42 mm,
D_{o}=D+d=C d+d=d(C+1) .
or d=\frac{D_{o}}{(C+1)}=\frac{42}{(C+1)} (a).
From Eq. (10.6),
\tau=K\left(\frac{8 P D}{\pi d^{3}}\right) (10.6).
\tau_{\max .}=K\left(\frac{8 P_{\max .} D}{\pi d^{3}}\right)=K\left(\frac{8 P_{\max .} C}{\pi d^{2}}\right) .
Therefore,
750=K\left(\frac{8(750) C(C+1)^{2}}{\pi(42)^{2}}\right) .
C(C+1)^{2} K=692.72 (b).
The problem is solved by trial and error method.
In practice, the spring index varies from 6 to 10.
Considering values of C in this range, the results are tabulated in the following manner.
CK(C + 1)² |
(C + 1)² |
K Eq.(10.7) |
C |
235.98 |
36 |
1.311 |
5 |
368.38 |
49 |
1.253 |
6 |
543.42 |
64 |
1.213 |
7 |
767.23 |
81 |
1.184 |
8 |
K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C} (10.7).
Comparing Eq. (b) and the values in above table,
C = 8
d=\frac{42}{(C+1)}=\frac{42}{8+1}=4.67 mm .
∴ d = 5 mm (i)
Step II Mean coil diameter
Since D_{o}=D+d \quad 42=D+5
D = 37 mm (ii)
Step III Check for design
C=\frac{D}{d}=\frac{37}{5}=7.4 .
K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}=\frac{4(7.4)-1}{4(7.4)-4}+\frac{0.615}{7.4}=1.2 .
From Eq. (10.13),
\tau=K\left(\frac{8 P C}{\pi d^{2}}\right) (10.13).
\tau_{\max .}=K\left(\frac{8 P C}{\pi d^{2}}\right)=(1.2)\left[\frac{8(750)(7.4)}{\pi(5)^{2}}\right] .
=678.38 N / mm ^{2} .
Therefore,
\tau_{\max }<750 N / mm ^{2} .
and the dimensions are satisfactory.