A homeowner uses a snowblower to clear his driveway. Knowing that the snow is discharged at an average angle of 40° with the horizontal, determine the initial velocity { \nu }_{ 0 } of the snow.
A homeowner uses a snowblower to clear his driveway. Knowing that the snow is discharged at an average angle of 40° with the horizontal, determine the initial velocity { \nu }_{ 0 } of the snow.
First note
\begin{aligned}& \left(\nu_x\right)_0=\nu_0 \cos 40^{\circ} \\& \left(\nu_y\right)_0=\nu_0 \sin 40^{\circ}\end{aligned}
Horizontal motion. (Uniform)
x=0+\left(\nu_x\right)_0 t
At B: \quad \quad \quad 14=\left(\nu_0 \cos 40^{\circ}\right) t \quad \text { or } \quad t_B=\frac{14}{\nu_0 \cos 40^{\circ}}
Vertical motion. (Uniformly accelerated motion)
y=0+\left(\nu_y\right)_0 t-\frac{1}{2} g t^2 \quad\left(g=32.2 \ \text{ft} / s ^2\right)
At B: \quad \quad \quad 1.5=\left(\nu_0 \sin 40^{\circ}\right) t_B-\frac{1}{2} g t_B^2
Substituting for t_B
1.5=\left(\nu_0 \sin 40^{\circ}\right)\left\lgroup\frac{14}{\nu_0 \cos 40^{\circ}}\right\rgroup-\frac{1}{2} g\left\lgroup\frac{14}{\nu_0 \cos 40^{\circ}}\right\rgroup^2
or \quad \quad \quad \nu_0^2=\frac{\frac{1}{2}(32.2)(196) / \cos ^2 40^{\circ}}{-1.5+14 \tan 40^{\circ}}
or \quad \quad \quad \quad \quad \quad \nu_0=22.9 \ \text{ft} / s \blacktriangleleft