Question 10.26: A hot-air balloon with a diameter of 15 ft, height of 13 ft,...

A hot-air balloon with a diameter of 15 ft, height of 13 ft, weight of 200 lb, and cargo (4 ft × 4 ft × 4 ft) weighing 300 lb ascends at a constant velocity of 25 ft/sec in the atmosphere to a height of 10,000 ft above sea level (standard atmosphere at 10,000 ft above sea level, \rho = 0.0017555 slugs/ft^{3} , \mu = 0.35343 \times 10^{-6} lb-sec/ft^{2} , \gamma = 0.056424 lb/ft^{3} ), as illustrated in Figure EP 10.26. Assume the drag coefficient for the hot-air balloon, C_{D} = 1.3. (a) Determine the lift force. (b) Determine the lift coefficient.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In order to determine the lift force, Equation 10.28 \sum\limits_{z}{F_{z}} = F_{L} + F_{B} – W – F_{D} = ma_{z} = 0 (Newton’s second law of motion) is applied in the vertical direction. The frontal area is used to compute the drag force for the hot-air balloon, and the drag force is determined by applying Equation 10.12 F_{D} = C_{D} \frac{1}{2} \rho v^{2}A as follows:

\sum\limits_{z}{F_{z}} = F_{L} + F_{B} – W – F_{D} = ma_{z} = 0

D_{b}: = 15 ft                               A_{frontb}: = \frac{\pi . D_{b}^{2}}{4} = 176.715 ft^{2}                               h_{b}: = 13 ft                               C_{Db}: = 1.3

V: = 25 \frac{ft}{sec}                               b_{c}: = 4 ft                               d_{c}: = 4 ft                               h_{c}: = 4 ft                               \gamma _{air}: = 0.056424 \frac{lb}{ft^{3}}

V_{bc}: = \frac{\pi .D_{b}^{3}}{12} + \frac{1}{3} \left[ \frac{\pi .D_{b}^{2} (h_{b} + h_{c})}{4} \right] – \frac{1}{3} \left(\frac{\pi . b_{c}^{2} h_{c}}{4} \right) + b_{c}. d_{c} . h_{c} = 1.932 \times 10^{3} ft^{3}

W_{b}: = 200 lb                               W_{c}: = 300 lb                               W_{bc}: = W_{b} + W_{c} = 500 lb

Guess value:                               F_{B}: = 100 lb                               F_{D}: = 100 lb                               F_{L}: = 100 lb

Given

F_{L} + F_{B} – W_{bc} – F_{D} = 0                               F_{B} = \gamma _{air} . V_{bc}                        F_{D} = C_{Db} \frac{1}{2} \rho _{air} .V^{2} . A_{frontb}
\left ( \begin{matrix} F_{B} \\ F_{D} \\ F_{L} \end{matrix} \right ) : =Find ( F_{B},F_{D}, F_{L})

F_{B} = 109.022 lb                               F_{D} = 170.631 lb                               F_{L} = 561.609 lb

(b) The planform area of the hot-air balloon is used to model the lift force for the hotair balloon, and the lift coefficient is determined by applying the lift force equation, Equation 10.21 F_{L} = C_{L} \frac{1}{2} \rho.V^{2} . A, as follows:

slug: = 1 lb \frac{sec^{2}}{ft}                               \rho _{air} : = 0.0017555 \frac{slug}{ft^{3}}                               \mu _{air}: = 0.35343 \times 10^{-6} lb \frac{sec}{ft^{2}}

Aplanc: = \frac{\pi . D_{b}^{2}}{4} = 176.715 ft^{2}

Guess value:                               R : = 10000                               C_{L} : = 1.0

F_{L} = C_{L} \frac{1}{2} \rho _{air} .V^{2} . Aplanc                               R = \frac{\rho _{air} .V .D_{b}}{\mu _{air}}
\left ( \begin{matrix} R \\ C_{L} \end{matrix} \right ) : = Find (R, C_{L})
R = 1.863 \times 10^{6}                              C_{L} = 5.793

Since R = 1.863 \times 10^{6} , this confirms the assumption that R > 10,000 (see Table 10.6). Furthermore, it is important to note that because such simplistic assumptions (for instance, the planform area of the hot-air balloon in the lift equation) have been made in the estimation and modeling of the lift force, F_{L} , the estimated value of the lift coefficient, C_{L} is a rough estimate at best.

 

The Drag Coefficient, C_{D} for Three-Dimensional Bodies at Given Orientation to the Direction of Flow, v for R > 10,000
  C_{D} = 1.3 ν
(m/s)
  C_{D}
10 1.0 – 1.4
20 0.8 – 1.2
30 0.5 – 0.9
40 0.3 – 0.7
Parachute, A = \pi D^{2}/4 Tree, A= frontal area
  C_{D} = 1.0 – 1.4 Position   C_{D} A ( ft^{2} )
Standing 9
Sitting 6
Crouching 2.5
High-rise buildings, A = frontal area Average person
Position  A ( ft^{2} )   C_{D}   C_{D} = 0.4
Upright 5.5 1.1
Racing 3.9 0.88
Drafting 3.9 0.5
Streamlined 5.0 0.12
Bikes Large birds, A = frontal area
Without deflector
C_{D} = 0.96
Minivan:
C_{D} = 0.4
With deflector:
C_{D} = 0.76
Passengercar or
sports car:
C_{D} = 0.3
Tractor-trailer truck, A= frontal area Automotive, A = frontal area

Related Answered Questions