\text { Given } S_{u t}=600 N / mm ^{2} \quad S_{y t}=450 N / mm ^{2} .
S_{e}=270 N / mm ^{2} \sigma_{\max .}=100 N / mm ^{2} .
\sigma_{\min .}=40 N / mm ^{2} .
Step I Permissible mean and amplitude stresses
\sigma_{a}=\frac{1}{2}(100-40)=30 N / mm ^{2} .
\sigma_{m}=\frac{1}{2}(100+40)=70 N / mm ^{2} .
S_{a}=n \sigma_{a}=30 n .
S_{m}=n \sigma_{m}=70 n .
where n is the factor of safety.
Step II Factor of safety using Gerber theory
From Eq. (5.46),
\frac{S_{a}}{S_{e}}+\left(\frac{S_{m}}{S_{u t}}\right)^{2}=1 (5.46).
\frac{S_{a}}{S_{e}}+\left(\frac{S_{m}}{S_{u t}}\right)^{2}=1 .
or \left(\frac{30 n}{270}\right)+\left(\frac{70 n}{600}\right)^{2}=1 .
n^{2}+8.16 n-73.47=0 .
Solving the above quadratic equation,
n = 5.41 (i).
Step III Factor of safety using Soderberg line
The equation of the Soderberg line is as follows,
\frac{S_{a}}{S_{e}}+\frac{S_{m}}{S_{y t}}=1 .
\left(\frac{30 n}{270}\right)+\left(\frac{70 n}{450}\right)=1 .
n = 3.75 (ii).
Step IV Factor of safety using Goodman line
The equation of the Goodman line is as follows:
\frac{S_{a}}{S_{e}}+\frac{S_{m}}{S_{u t}}=1 .
\left(\frac{30 n}{270}\right)+\left(\frac{70 n}{600}\right)=1 .
n = 4.39 (iii).
Step V Factor of safety against static failure
The factor of safety against static failure is given by,
n=\frac{S_{y t}}{\sigma_{\max }}=\frac{450}{100}=4.5 (iv).