\text { Given }\left(\sigma_{x}\right)_{\max }=100 N / mm ^{2} .
\left(\sigma_{x}\right)_{\min .}=40 N / mm ^{2} \quad\left(\sigma_{y}\right)_{\max }=80 N / mm ^{2} \quad\left(\sigma_{y}\right)_{\min } .
=10 N / mm ^{2} \quad S_{u t}=600 N / mm ^{2} \quad S_{e}=270 N / mm ^{2} .
Step I Mean and amplitude stresses
\sigma_{x m}=\frac{1}{2}(100+40)=70 N / mm ^{2} .
\sigma_{x a}=\frac{1}{2}(100-40)=30 N / mm ^{2} .
\sigma_{y m}=\frac{1}{2}(80+10)=45 N / mm ^{2} .
\sigma_{y a}=\frac{1}{2}(80-10)=35 N / mm ^{2} .
\sigma_{m}=\sqrt{\left(\sigma_{x m}^{2}-\sigma_{x m} \sigma_{y m}+\sigma_{y m}^{2}\right)} .
=\sqrt{\left[(70)^{2}-(70)(45)+(45)^{2}\right]} .
=61.44 N / mm ^{2} .
\sigma_{a}=\sqrt{\left(\sigma_{x a}^{2}-\sigma_{x a} \sigma_{y a}+\sigma_{y a}^{2}\right)} .
=\sqrt{\left[(30)^{2}-(30)(35)+(35)^{2}\right]} .
=32.79 N / mm ^{2} .
Step II Construction of modified Goodman diagram
\tan \theta=\frac{\sigma_{a}}{\sigma_{m}}=\frac{32.79}{61.44}=0.534 \text { or } \theta=28.09^{\circ} .
The modified Goodman diagram for this example is shown in Fig. 5.55.
Step III Permissible stress amplitude
Refer to Fig. 5.55. The co-ordinates of the point X are obtained by solving the following two equations simultaneously.
\frac{S_{a}}{270}+\frac{S_{m}}{660}=1 (a).
\frac{S_{a}}{S_{m}}=\tan \theta=0.534 (b).
∴ S_{a}=152.88 N / mm ^{2} .
S_{m}=286.29 N / mm ^{2} .
Step IV Factor of safety
(f s)=\frac{S_{a}}{\sigma_{a}}=\frac{152.88}{32.79}=4.66 .