\text { Given } K_{a}=10 kN \quad n=300 rpm \quad d=60 mm .
L_{10 h }=4000 h .
Step I Radial and axial forces on bearings
Refer to forces acting on the shaft in the vertical plane as shown in Fig. 15.13. Taking moments about the bearing B,
F_{r A} \times 300=30000 \times 100 \quad \text { or } \quad F_{r A}=10000 N .
Taking moments about the bearing A,
F_{r B} \times 300=30000 \times 200 \text { or } F_{r B}=20000 N .
Also,
K_{a}=10000 N .
Step II Tentative selection of bearing
F_{r A}<F_{r B} \text { and } K_{a}>0 .
The above conditions are similar to Case 2(a) illustrated in Fig. 15.11. For this case,
F_{a A}=F_{a B}+K_{a} (a).
F_{a B}=\frac{0.5 F_{r B}}{Y} (b).
Tentatively, we will consider the following taper roller bearings from Table 15.6, which are available for the shaft of 60 mm diameter.
Y |
e |
Designation |
C |
B |
D |
d |
1.4 |
0.43 |
32012 X |
76 500 |
23 |
95 |
60 |
1.8 |
0.33 |
33012 |
85 800 |
27 |
95 |
|
1.5 |
0.40 |
33112 |
110 000 |
30 |
100 |
60 |
1.5 |
0.40 |
30212 |
91 300 |
23.75 |
110 |
|
1.5 |
0.40 |
32212 |
119 000 |
29.75 |
110 |
|
1.5 |
0.40 |
33212 |
157 000 |
38 |
110 |
|
1.1 |
0.54 |
T5ED060 |
157 000 |
39 |
115 |
|
1.8 |
0.33 |
T2EE060 |
183 000 |
40 |
115 |
|
0.72 |
0.83 |
T7FC060 |
145 000 |
37 |
125 |
60 |
1.7 |
0.35 |
30312 |
161 000 |
33.5 |
130 |
|
0.72 |
0.83 |
31312 |
134 000 |
33.5 |
130 |
|
1.7 |
0.35 |
32312 |
216 000 |
48.5 |
130 |
|
1.1 |
0.54 |
32312 B |
205 000 |
48.5 |
130 |
|
It is also observed that the values of Y vary from 0.72 to 1.8. Taking an average value of 1.3 as the first trial value,
F_{a B}=\frac{0.5 F_{r B}}{Y}=\frac{0.5(20000)}{1.3}=7692.31 N .
F_{a A}=F_{a B}+K_{a}=7692.31+10000=17692.31 N .
Bearing A is more critical because it is subjected to maximum load. For the bearing A,
F_{r A}=10000 N \quad F_{a A}=17692.31 N .
K_{a}=10000 N .
Therefore,
\frac{F_{a A}}{F_{r A}}=\frac{17692.31}{10000}=1.769 .
It is observed from the above table that for all values of e,
\frac{F_{a A}}{F_{r A}}>e .
From Eq. (15.12),
P=0.4 F_{r}+Y F_{a} \text { when }\left(F_{d} / F_{r}\right)>e (15.12).
P=0.4 F_{r}+Y F_{a}=0.4(10000)+1.3(17692.31) .
= 27 000 N
From Eq. (15.9),
L_{10}=\frac{60 n L_{10 h }}{10^{6}} (15.9).
L_{10}=\frac{60 n L_{10 h }}{10^{6}}=\frac{60(300)(4000)}{10^{6}} .
= 72 million rev.
The dynamic load carrying capacity of the bearing A is given by,
C=P\left(L_{10}\right)^{0.3}=27000(72)^{0.3}=97401.02 N .
It is observed that Bearing No. 33112 (C = 111 000 N) may be suitable.
Step III Final check for selection
For Bearing No. 33112,
e = 0.4 Y = 1.5 C = 111 000 N.
F_{a B}=\frac{0.5 F_{r B}}{Y}=\frac{0.5(20000)}{1.5} 6666.67 N .
F_{a A}=F_{a B}+K_{a}=6666.67+10000 .
= 16 666.67 N
Since,
\frac{F_{a A}}{F_{r A}}=\frac{16666.67}{10000}=1.67 \quad \therefore \frac{F_{a A}}{F_{r A}}>e .
\therefore \quad P=0.4 F_{r}+Y F_{a} .
= 0.4(10 000) + 1.5 (16 666.67)
= 29 000 N.
C=P\left(L_{10}\right)^{0.3}=29000(72)^{0.3} .
= 104 615.91 N < 110 000 N
Therefore, Bearing No. 33112 (C = 111 000 N) is suitable for the application. We will check whether Bearing No. 33112 is also suitable at B. For the bearing B,
F_{r B}=20000 N .
F_{a B}=\frac{0.5 F_{r B}}{Y}=\frac{0.5(20000)}{1.5}=6666.67 N .
Therefore,
\frac{F_{a B}}{F_{r B}}=\frac{6666.67}{20000}=0.33 \quad \text { and } \quad e=0.4 .
\frac{F_{a B}}{F_{r B}}<e .
From Eq. (15.11),
P=F_{r} \text { when }\left(F_{a}/ F_{r}\right) \leq e (15.11).
P=F_{r B}=20000 N .
C=P\left(L_{10}\right)^{0.3}=20000(72)^{0.3} .
= 72 148.91 N < 110 000 N.
Therefore, Bearing No. 33112 is selected at A as well as at B.