Question 17.6: A mass of 5 kg hangs from a spring and makes damped oscillat...

A mass of 5 kg hangs from a spring and makes damped oscillations. If the time of 50 complete oscillations is found to be 20 s, and the ratio of the first downward displacement to the sixth is found to be 22.5, find the stiffness of the spring and the damping coefficient.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given:            m=5 kg , f_{d}=\frac{50}{20}=2.5 Hz , \frac{x_{1}}{x_{6}}=22.5 .

Logarithmic decrement,          \delta=\left(\frac{1}{n}\right) \ln \left(\frac{x_{o}}{x_{n}}\right)=\left(\frac{1}{5}\right) \ln \left(\frac{x_{1}}{x_{6}}\right)=\left(\frac{1}{5}\right) \ln 22.5=0.6227 .

\delta=\frac{2 \pi \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}} .

0.6227=\frac{2 \pi \times \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}} .

1-\zeta^{2}=101.8 \zeta^{2} .

\zeta=0.0986 .

\omega_{d}=2 \pi f_{d}=2 \pi \times 2.5=15.708 rad / s .

\omega_{n}=\frac{\omega_{d}}{\left(1-\zeta^{2}\right)^{1 / 2}}=\frac{15.708}{\left[1-(0.0986)^{2}\right]^{1 / 2}}=15.785 rad / s .

Stiffness of spring,      k=m \omega_{n}^{2}=5 \times(15.785)^{2}=1245.83 N / m .

Critical damping coefficient,    c_{c}=2 m \omega_{n}=2 \times 5 \times 15.785=157.85 N \cdot s / m .

Damping coefficient,      c=\zeta c_{c}=0.0986 \times 157.85=15.564 N \cdot s / m .

Related Answered Questions