Question 5.21: A mass of 50 kg drops through 25 mm at the centre of a 250 m...

A mass of 50 kg drops through 25 mm at the centre of a 250 mm long simply supported beam. The beam has a square cross-section. It is made of steel 30C8 \left(S_{v t}=400 N / mm ^{2}\right) and the factor of safety is 2. The modulus of elasticity is 207 000 N/mm². Determine the dimension of the cross-section of the beam.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } m=50 kg \quad h=25 mm \quad l=250 mm .

S_{y t}=400 N / mm ^{2} \quad(f s)=2 \quad E=207000 N / mm ^{2} .

Step I Impact stress \left(\sigma_{i}\right) .
From Eq. (5.52),

\sigma_{i}=\frac{W}{A}\left[1+\sqrt{1+\frac{2 h A E}{W l}}\right]           (5.52).

\sigma_{i}=\frac{W}{A}\left[1+\sqrt{1+\frac{2 h A E}{W l}}\right] .

In the above equation,

\frac{W}{A}=\text { static stress }=\sigma_{s}             (a)

\frac{W l}{A E}=\text { static deflection }=\delta_{s}         (b).

Substituting (a) and (b) in Eq. (5.52),

\sigma_{i}=\frac{W}{A}\left[1+\sqrt{1+\frac{2 h A E}{W l}}\right]           (5.52).

\sigma_{i}=\sigma_{s}\left[1+\sqrt{1+\frac{2 h}{\delta_{s}}}\right]             (c).

Step II Static stress \left(\sigma_{s}\right) .
For a simply supported beam,

W=m g=50(9.81)=490.5 N .

M_{b}=\frac{W l}{4}=\frac{490.5(250)}{4}=30656.25 N – mm .

I=\frac{b d^{3}}{12}=\frac{a(a)^{3}}{12}=\frac{a^{4}}{12} mm ^{4} \quad y=\frac{a}{2} .

where a is the side of the square cross-section.

Therefore,

\sigma_{s}=\sigma_{b}=\frac{M_{b} y}{I}=\frac{(30656.25)\left(\frac{a}{2}\right)}{\left(\frac{a^{4}}{12}\right)} .

=\frac{183973.5}{a^{3}} N / mm ^{2}               (d)

Step III Static deflection.

\delta_{s}=\frac{W l^{3}}{48 E I}=\frac{(490.5)(250)^{3}(12)}{48(207000) a^{4}}=\frac{9256.11}{a^{4}} mm         (e).

Step IV Cross-section of beam
Equating impact stress to permissible stress,

\sigma_{i}=\frac{S_{y t}}{(f s)}=\frac{400}{2}=200 N / mm ^{2}         (f).

Substituting (d), (e) and (f) in Eq. (c),

200=\frac{183973.5}{a^{3}}\left[1+\sqrt{1+\frac{2(25) a^{4}}{9256.11}}\right] .

or      \frac{a^{3}}{919.87}=\left[1+\sqrt{1+\frac{2(25) a^{4}}{9256.11}}\right] .

\left(\frac{a^{3}}{919.87}-1\right)^{2}=1+\frac{a^{4}}{185.12}.

Simplifying,

\frac{a^{3}}{846160.82}-\frac{1}{459.94}=\frac{a}{185.12} .

The term (1/459.94) is very small and neglected.
Therefore, a = 67.6 or 70 mm.
The cross-section of the beam is 70 × 70 mm.
Step V Check for impact stresses

\sigma_{s}=\frac{183973.5}{a^{3}}=\frac{183973.5}{(70)^{3}}=0.5363 N / mm ^{2} .

\delta_{s}=\frac{9256.11}{a^{4}}=\frac{9256.11}{(70)^{4}}=3.855 \times 10^{-4} mm .

\sigma_{i}=\sigma_{s}\left[1+\sqrt{1+\frac{2 h}{\delta_{s}}}\right].

=0.5363\left[1+\sqrt{1+\frac{2(25)}{\left(3.855 \times 10^{-4}\right)}}\right] .

=193.68 N / mm ^{2} .

\therefore \quad \sigma_{i}<200 N / mm ^{2} .

Related Answered Questions