Question 11.185E: A mixture of 50% carbon dioxide and 50% water by mass is bro...

A mixture of 50% carbon dioxide and 50% water by mass is brought from 2800 R, 150 lbf / in .^{2} to 900 R, 30 lbf / in .^{2} in a polytropic process through a steady flow device. Find the necessary heat transfer and work involved using values from F.4.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Process     Pv ^{ n } = constant       leading to

n \ln \left( v _{2} / v _{1}\right)=\ln \left( P _{1} / P _{2}\right) ; \quad v = RT / P

n = ln(150/30) / ln(900 × 150/30 × 2800) =3.3922

\begin{aligned}& R _{\operatorname{mix}}= \Sigma c _{ i } R _{ i }=(0.5 \times 35.1+0.5 \times 85.76) / 778=0.07767   Btu / lbm  R \\& C _{ P  mix }= \Sigma c _{ i } C _{ Pi }=0.5 \times 0.203+0.5 \times 0.445=0.324   Btu / lbm  R\end{aligned}

Work is from Eq.7.18:

\begin{aligned}w &=-\int vd P =-\frac{ n }{ n -1}\left( P _{ e } v _{ e }- P _{ i } v _{ i }\right)=-\frac{ nR }{ n -1}\left( T _{ e }- T _{ i }\right) \\&=-\frac{3.3922 \times 0.07767}{2.3922}(900-2800)= 2 0 9 . 3 \frac{ B tu }{ lbm }\end{aligned}

Heat transfer from the energy equation

q=h_{e}-h_{i}+w=C_{p}\left(T_{e}-T_{i}\right)+w=-406.3   Btu / lbm

…………………………………….

Eq.7.18 :
\begin{aligned}w &=-\int_{i}^{e} v d P \quad \text { and } \quad P v^{n}=\text { constant }=C^{n} \\w &=-\int_{i}^{e} v d P=-C \int_{i}^{e} \frac{d P}{P^{1 / n}} \\&=-\frac{n}{n-1}\left(P_{e} v_{e}-P_{i} v_{i}\right)=-\frac{n R}{n-1}\left(T_{e}-T_{i}\right)\end{aligned}

 

 

F.4

Related Answered Questions