Question 12.6.4: (A Model of Species Cooperation-Symbiosis) Consider the symb...

(A Model of Species Cooperation-Symbiosis) Consider the symbiotic model governed by the system

\begin{aligned}&x_{1}{ }^{\prime}(t)=-\frac{1}{2} x_{1}(t)+x_{2}(t) \\&x_{2}{ }^{\prime}(t)=\frac{1}{4} x_{1}(t)-\frac{1}{2} x_{2}(t)\end{aligned}

In this model the population of each species increases proportionally to the population of the other and decreases proportionally to its own population. Suppose that x_{1}(0)= 200 and x_{2}(0)=500. Determine the population of each species for t>0.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here A=\left(\begin{array}{rr}-\frac{1}{2} & 1 \\ \frac{1}{4} & -\frac{1}{2}\end{array}\right) with eigenvalues \lambda_{1}=0 and \lambda_{2}=-1 and corresponding eigenvectors \mathbf{v}_{1}=\left(\begin{array}{l}2 \\ 1\end{array}\right) and \mathbf{v}_{2}=\left(\begin{array}{r}2 \\ -1\end{array}\right). Then

C=\left(\begin{array}{rr}2 & 2 \\1 & -1\end{array}\right), \quad C^{-1}=-\frac{1}{4}\left(\begin{array}{rr}-1 & -2 \\-1 & 2\end{array}\right), \quad D=\left(\begin{array}{rr}0 & 0 \\0 & -1\end{array}\right)

and \begin{aligned}e^{D t} &=\left(\begin{array}{cc}e^{0 t} & 0 \\0 & e^{-t}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\0 & e^{-t}\end{array}\right) \text {. Thus } \\e^{A t} &=-\frac{1}{4}\left(\begin{array}{rr}2 & 2 \\1 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\0 & e^{-t}\end{array}\right)\left(\begin{array}{rr}-1 & -2 \\-1 & 2\end{array}\right) \\&=-\frac{1}{4}\left(\begin{array}{rr}2 & 2 \\1 & -1\end{array}\right)\left(\begin{array}{ll}-1 & -2 \\-e^{-t} & 2 e^{-t}\end{array}\right) \\&=-\frac{1}{4}\left(\begin{array}{ll}-2 & -2 e^{-t} & -4+4 e^{-t} \\-1+ & e^{-t} & -2-2 e^{-t}\end{array}\right)\end{aligned}

and

\begin{aligned}\mathbf{x}(t)=e^{A t} \mathbf{x}(0) &=-\frac{1}{4}\left(\begin{array}{ll}-2-2 e^{-t} & -4+4 e^{-t} \\-1+e^{-t} & -2-2 e^{-t}\end{array}\right)\left(\begin{array}{l}200 \\500\end{array}\right) \\&=-\frac{1}{4}\left(\begin{array}{l}-2400+1600 e^{-t} \\-1200-800 e^{-t}\end{array}\right) \\&=\left(\begin{array}{l}600-400 e^{-t} \\300+200 e^{-t}\end{array}\right)\end{aligned}

We have e^{-t} \rightarrow 0 as t \rightarrow \infty. This means that as time goes on, the two cooperating species approach the equilibrium populations 600 and 300 , respectively. Neither population is eliminated.

Related Answered Questions

Differentiating the first equation and substitutin...