Question 12.182E: A new compound is used in an ideal Rankine cycle where satur...

A new compound is used in an ideal Rankine cycle where saturated vapor at 400 F enters the turbine and saturated liquid at 70 F exits the condenser. The only properties known for this compound are a molecular mass of 80 lbm/lbmol, an ideal gas heat capacity of Cpo = 0.20 Btu/lbm-R and Tc = 900 R, Pc = 750 psia. Find the specific work input to the pump and the cycle thermal efficiency using the generalized charts.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}& T _{1}=400   F =860   R \\& x _{1}=1.0 \\& T _{3}=70   F =530   R \\& x _{3}=0.0\end{aligned}

Properties known:

\begin{aligned}& M =80, C _{ PO }=0.2   Btu / lbm R \\& T _{ C }=900   R , P _{ C }=750   lbf / in. ^{2} \\& T _{ r 1}=\frac{860}{900}=0.956, \quad T _{ r 3}=\frac{530}{900}=0.589\end{aligned}

From D.1:    P _{ r1 }=0.76, P _{1}=0.76 \times 750=570   lbf / in .^{2}= P _{4}

\begin{aligned}& P _{ r 3}=0.025, P _{3}=19   lbf / in .^{2}= P _{2}, \quad Z _{ f 3}=0.0045 \\& v _{ f 3}= Z _{ f 3} RT _{3} / P _{3}=\frac{0.0045 \times 1545 \times 530}{19 \times 144 \times 80}=0.0168   ft ^{3} / lbm \\& w _{ P }=-\int_{3}^{4} vdP \approx v _{ f 3}\left( P _{4}- P _{3}\right)=-0.0168(570-19) \times \frac{144}{778}=-1.71   Btu / lbm \\& q _{ H }+ h _{4}= h _{1}, \text { but } h _{3}= h _{4}+ w _{ P }=> q _{ H }=\left( h _{1}- h _{3}\right)+ w _{ p }\end{aligned}

From D.2,

\begin{aligned}&\left( h _{1}^{*}- h _{1}\right)=(1.9859 / 80) \times 900 \times 1.34=30.0   Btu / lbm \\&\left( h _{3}^{*}- h _{3}\right)=(1.9859 / 80) \times 900 \times 5.2=116.1   Btu / lbm \\&\left( h _{1}^{*}- h _{3}^{*}\right)= C _{ P 0}\left( T _{1}- T _{3}\right)=0.2(400-70)=66.0   Btu / lbm \\&\left( h _{1}- h _{3}\right)=-30.0+66.0+116.1=152.1   Btu / lbm \\& q _{ H }=152.1+(-1.71)=150.4   Btu / lbm\end{aligned}

Turbine,    \left( s _{2}- s _{1}\right)=0=-\left( s _{2}^{*}- s _{2}\right)+\left( s _{2}^{*}- s _{1}^{*}\right)+\left( s _{1}^{*}- s _{1}\right)

From D.3,

\begin{aligned}&\left( s _{1}^{*}- s _{1}\right)=(1.9859 / 80) \times 1.06=0.0263   Btu / lbm  R \\&\left( s _{2}^{*}- s _{1}^{*}\right)=0.20 \ln \frac{530}{860}-0.02482 \ln \frac{19}{570}=-0.0124   Btu / lbm  R\end{aligned}

Substituting,

\begin{aligned}&\left( s _{2}^{*}- s _{2}\right)=-0.0124+0.0263=0.0139=\left( s _{2}^{*}- s _{ f 2}\right)- x _{2} s _{ fg 2} \\&0.0139=0.02482 \times 8.77- x _{2} \times 0.02482(8.77-0.075) \\&\Rightarrow x _{2}=0.9444 \\&\left( h _{2}^{*}- h _{2}\right)=\left( h _{2}^{*}- h _{ f 2}\right)- x _{2} h _{ fg 2}\end{aligned}

From D.2,

\begin{aligned}& h _{ fg 2}=0.02482 \times 900(5.2-0.07)=114.6   Btu / lbm \\&\left( h _{2}^{*}- h _{2}\right)=116.1-0.9444 \times 114.6=7.9   Btu / lbm \\& w _{ T }=\left( h _{1}- h _{2}\right)=-30.0+66.0+7.9=43.9   Btu / lbm \\&\eta_{ TH }=\frac{ w _{ NET }}{ q _{ H }}=\frac{43.9-1.7}{150.4}= 0 . 2 8 1\end{aligned}

 

182
D.1
D.2
D.3

Related Answered Questions