A nozzle is required to produce a steady stream of R-134a at 790 ft/s at ambient conditions, 15 lbf / in ^{2}, 70 F. The isentropic efficiency may be assumed to be 90%. What pressure and temperature are required in the line upstream of the nozzle?
A nozzle is required to produce a steady stream of R-134a at 790 ft/s at ambient conditions, 15 lbf / in ^{2}, 70 F. The isentropic efficiency may be assumed to be 90%. What pressure and temperature are required in the line upstream of the nozzle?
C.V. Nozzle, steady flow and no heat transfer.
Actual nozzle energy Eq.: h _{1}= h _{2}+ V _{2}^{2} / 2
State 2 actual: Table F.10.2 h _{2}=180.975 Btu / lbm
h _{1}= h _{2}+ V _{2}^{2} / 2=180.975+\frac{790^{2}}{2 \times 25037}=193.44 Btu / lbmRecall 1 Btu / lbm =25037 ft ^{2} / s ^{2} from Table A.1.
Ideal nozzle exit: h _{2 s }= h _{1}- KE _{ s }=193.44-\frac{790^{2}}{2 \times 25037} / 0.9=179.59 Btu / lbm
Recall conversion 1 Btu / lbm =25037 ft ^{2} / s ^{2} from A.1
State 2s: \left( P _{2}, h _{2 s }\right) \Rightarrow T _{2 s }=63.16 F , \quad s _{2 s }=0.4481 Btu / lbm R
Entropy Eq. ideal nozzle: s _{1}= s _{2 s }
State 1: \left( h _{1}, s _{1}= s _{2 s }\right) ⇒ Double interpolation or use software.
For 40 psia: given h _{1} then s = 0.4544 Btu/lbm R, T = 134.47 F
For 60 psia: given h _{1} then s = 0.4469 Btu/lbm R, T = 138.13 F
Now a linear interpolation to get P and T for proper s
P_{1}=40+20 \frac{0.4481-0.4544}{0.4469-0.4544}= 5 6 . 8 \text { psia } T _{1}=134.47+(138.13-134.47) \frac{0.4481-0.4544}{0.4469-0.4544}= 1 3 7 . 5 F