Question 20.5: A pair of worm and worm wheel is designated as, 1/30/10/10 T...

A pair of worm and worm wheel is designated as,
1/30/10/10
The input speed of the worm is 1200 rpm. The worm wheel is made of centrifugally cast, phosphor-bronze and the worm is made of case-hardened carbon steel 14C6. Determine the power transmitting capacity based on the beam strength.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \quad n_{1}=1200 rpm \quad z_{1}=1 \quad z_{2}=30 \text { teeth } .

q = 10 m = 10 mm
Step I Permissible torque on worm wheel

i=\frac{z_{2}}{z_{1}}=\frac{30}{1}=30 .

n_{1}=1200 rpm \quad n_{2}=\frac{1200}{i}=\frac{1200}{30}=40 rpm .

d_{2}=m z_{2}=10(30)=300 mm .

\tan \gamma=\frac{z_{1}}{q}=\frac{1}{10}=0.1 \quad \text { or } \quad \gamma=5.71^{\circ} .

From Eq. (20.20),

F=2 m \sqrt{(q+1)}                 (20.20),

F=2 m \sqrt{(q+1)}=2(10) \sqrt{(10+1)} .

= 66.33 mm.

From Eqs (20.13) and (20.14),

c=0.2 m \cos \gamma                   (20.13).

d_{a 1}=m(q+2)                   (20.14).

c=0.2 m \cos \gamma=0.2(10) \cos (5.71)=1.99 mm .

d_{g 1}=m(q+2)=10(10+2)=120 mm .

From Eq. (20.21),

l_{r}=\left(d_{a 1}+2 c\right) \sin ^{-1}\left[\frac{F}{\left(d_{a 1}+2 c\right)}\right]                 (20.21).

l_{r}=\left(d_{a 1}+2 c\right) \sin ^{-1}\left[\frac{F}{\left(d_{a 1}+2 c\right)}\right] .

=(120+2 \times 1.99) \sin ^{-1}\left[\frac{66.33}{(120+2 \times 1.99)}\right] .

= 69.988 mm
For case-hardened carbon steel 14C6 (Table 20.2),

Table 20.2 Values of bending stress factor S_{b}

S_{b} Material
7.00 Phosphor-bronze (centrifugally cast)
6.40 Phosphor-bronze (sand-cast and chilled)
5.00 Phosphor-bronze (sand-cast)
14.10 0.4% Carbon steel-normalized (40C8)
17.60 0.55% Carbon steel-normalized (55C8)
28.20 Case-hardened carbon steels (10C4, 14C6)
33.11 Case-hardened alloy steels (16Ni80Cr60
and 20Ni2Mo25)
35.22 Nickel-chromium steels (13Ni3Cr80 and
15Ni4Crl)

S_{b 1}=28.2 .

For centrifugally cast phosphor-bronze,

S_{b 2}=7.0 .

From Fig. 20.14,

X_{b 1}=0.25 \text { for } n_{1}=1200 rpm .

X_{b 2}=0.48 \text { for } n_{2}=40 rpm .

From Eqs (20.35) and (20.36),

\left(M_{t}\right)_{1}=17.65 X_{b 1} S_{b 1} m 1_{r} d_{2} \cos \gamma                   (20.35).

\left(M_{t}\right)_{2}=17.65 X_{b 2} S _{b 2} m 1_{r} d_{2} \cos \gamma                 (20.36).

\left(M_{t}\right)_{1}=17.65 X_{b 1} S_{b 1} m l_{r} d_{2} \cos \gamma

=17.65(0.25)(28.2)(10)(69.988)(300) \cos (5.71) .

= 25 996 711 N-mm                               (a).

\left(M_{t}\right)_{2}=17.65 X_{b 2} S_{b 2} ml _{r} d_{2} \cos \gamma

=17.65(0.48)(7.0)(10)(69.998)(300) \cos (5.71) .

= 12 389 922 N-mm                   (b).

The lower value of the torque on the worm wheel is 12 389 922 N-mm.
Step II Power transmitting capacity based on beam strength

kW =\frac{2 \pi n_{2}\left(M_{t}\right)}{60 \times 10^{6}}=\frac{2 \pi(40)(12389922)}{60 \times 10^{6}}=51.9 .

20.14

Related Answered Questions