\text { Given } \quad n_{1}=1200 rpm \quad z_{1}=1 \quad z_{2}=30 \text { teeth } .
q = 10 m = 10 mm
Step I Permissible torque on worm wheel
i=\frac{z_{2}}{z_{1}}=\frac{30}{1}=30 .
n_{1}=1200 rpm \quad n_{2}=\frac{1200}{i}=\frac{1200}{30}=40 rpm .
d_{2}=m z_{2}=10(30)=300 mm .
\tan \gamma=\frac{z_{1}}{q}=\frac{1}{10}=0.1 \quad \text { or } \quad \gamma=5.71^{\circ} .
From Eq. (20.20),
F=2 m \sqrt{(q+1)} (20.20),
F=2 m \sqrt{(q+1)}=2(10) \sqrt{(10+1)} .
= 66.33 mm.
From Eqs (20.13) and (20.14),
c=0.2 m \cos \gamma (20.13).
d_{a 1}=m(q+2) (20.14).
c=0.2 m \cos \gamma=0.2(10) \cos (5.71)=1.99 mm .
d_{g 1}=m(q+2)=10(10+2)=120 mm .
From Eq. (20.21),
l_{r}=\left(d_{a 1}+2 c\right) \sin ^{-1}\left[\frac{F}{\left(d_{a 1}+2 c\right)}\right] (20.21).
l_{r}=\left(d_{a 1}+2 c\right) \sin ^{-1}\left[\frac{F}{\left(d_{a 1}+2 c\right)}\right] .
=(120+2 \times 1.99) \sin ^{-1}\left[\frac{66.33}{(120+2 \times 1.99)}\right] .
= 69.988 mm
For case-hardened carbon steel 14C6 (Table 20.2),
Table 20.2 Values of bending stress factor S_{b}
S_{b} |
Material |
7.00 |
Phosphor-bronze (centrifugally cast) |
6.40 |
Phosphor-bronze (sand-cast and chilled) |
5.00 |
Phosphor-bronze (sand-cast) |
14.10 |
0.4% Carbon steel-normalized (40C8) |
17.60 |
0.55% Carbon steel-normalized (55C8) |
28.20 |
Case-hardened carbon steels (10C4, 14C6) |
33.11 |
Case-hardened alloy steels (16Ni80Cr60
and 20Ni2Mo25) |
35.22 |
Nickel-chromium steels (13Ni3Cr80 and
15Ni4Crl) |
S_{b 1}=28.2 .
For centrifugally cast phosphor-bronze,
S_{b 2}=7.0 .
From Fig. 20.14,
X_{b 1}=0.25 \text { for } n_{1}=1200 rpm .
X_{b 2}=0.48 \text { for } n_{2}=40 rpm .
From Eqs (20.35) and (20.36),
\left(M_{t}\right)_{1}=17.65 X_{b 1} S_{b 1} m 1_{r} d_{2} \cos \gamma (20.35).
\left(M_{t}\right)_{2}=17.65 X_{b 2} S _{b 2} m 1_{r} d_{2} \cos \gamma (20.36).
\left(M_{t}\right)_{1}=17.65 X_{b 1} S_{b 1} m l_{r} d_{2} \cos \gamma
=17.65(0.25)(28.2)(10)(69.988)(300) \cos (5.71) .
= 25 996 711 N-mm (a).
\left(M_{t}\right)_{2}=17.65 X_{b 2} S_{b 2} ml _{r} d_{2} \cos \gamma
=17.65(0.48)(7.0)(10)(69.998)(300) \cos (5.71) .
= 12 389 922 N-mm (b).
The lower value of the torque on the worm wheel is 12 389 922 N-mm.
Step II Power transmitting capacity based on beam strength
kW =\frac{2 \pi n_{2}\left(M_{t}\right)}{60 \times 10^{6}}=\frac{2 \pi(40)(12389922)}{60 \times 10^{6}}=51.9 .