Question 20.2: A pair of worm and worm wheel is designated as 3/60/10/6 The...

A pair of worm and worm wheel is designated as
3/60/10/6
The worm is transmitting 5 kW power at 1440 rpm to the worm wheel. The coefficient of friction is 0.1 and the normal pressure angle is 20°. Determine the components of the gear tooth force acting on the worm and the worm wheel.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } kW =5 \quad n=1440 rom \quad \mu=0.1 .

\alpha=20^{\circ} \quad z_{1}=3 \quad z_{2}=60 \text { teeth } \quad q=10 .

m = 6 mm
Step I Components of tooth force acting on worm

d_{1}=q m=10(6)=60 mm .

\tan \gamma=\frac{z_{1}}{q}=\frac{3}{10}=0.3 \quad \text { or } \quad \gamma=16.7^{\circ} .

M_{t}=\frac{60 \times 10^{6}( kW )}{2 \pi n_{1}}=\frac{60 \times 10^{6}(5)}{2 \pi(1440)} .

=33157.28 N – mm .

From Eq. (20.29),

\left(P_{1}\right)_{t}=\frac{2 M_{t}}{d_{1}}                   (20.29).

\left(P_{1}\right)_{t}=\frac{2 M_{t}}{d_{1}}=\frac{2(33157.28)}{60}=1105.24 N           (a).

From Eqs (20.30),

\left(P_{1}\right)_{a}=\left(P_{1}\right)_{t} \times \frac{(\cos \alpha \cos \gamma-\mu \sin \gamma)}{(\cos \alpha \sin \gamma+\mu \cos \gamma)}             (20.30).

\left(P_{1}\right)_{a}=\left(P_{1}\right)_{t} \times \frac{(\cos \alpha \cos \gamma-\mu \sin \gamma)}{(\cos \alpha \sin \gamma+\mu \cos \gamma)} .

=1105.24 \times \frac{[\cos (20) \sin (16.7)-0.1 \sin (16.7)]}{[\cos (20) \sin (16.7)+0.1 \cos (16.7)]} .

= 2632.55 N                (b)
From Eq. (20.31),

\left(P_{1}\right)_{r}=\left(P_{1}\right)_{t} \times \frac{\sin \alpha}{(\cos \alpha \sin \gamma+\mu \cos \gamma)}               (20.31),

\left(P_{1}\right)_{r}=\left(P_{1}\right)_{t} \times \frac{\sin \alpha}{(\cos \alpha \sin \gamma+\mu \cos \gamma)} .

=1105.24 \times \frac{\sin (20)}{[\cos (20) \sin (16.7)+0.1 \cos (16.7)]}.

= 1033.35 N (c)
Step II Components of tooth force acting on worm wheel
The force components acting on the worm wheel are as follows (Eqs. 20.22 to 20.24):

\left(P_{2}\right)_{t}=\left(P_{1}\right)_{a} .              (20.22)

\left(P_{2}\right)_{a}=\left(P_{1}\right)_{t} .              (20.23)

\left(P_{2}\right)_{r}=\left(P_{1}\right)_{r} .              (20.24)

\left(P_{2}\right)_{t}=\left(P_{1}\right)_{a}=2632.55 N .

\left(P_{2}\right)_{a}=\left(P_{1}\right)_{t}=1105.24 N .

\left(P_{2}\right)_{r}=\left(P_{1}\right)_{r}=1033.35 N .

Related Answered Questions