Question 10.31: A particle of charge q is traveling at constant speed υ alon...

A particle of charge q is traveling at constant speed υ along the x axis. Calculate the total power passing through the plane x = a, at the moment the particle itself is at the origin. \left[\text { Answer: } q^{2} v / 32 \pi \epsilon_{0} a^{2}\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

S =\frac{1}{\mu_{0}}( E \times B ) ; B =\frac{1}{c^{2}}( v \times E ) (Eq. 10.76).

B =\frac{1}{c}(\hat{ᴫ} \times E )=\frac{1}{c^{2}}( v \times E )                                            (10.76)

\text { So } S =\frac{1}{\mu_{0} c^{2}}[ E \times( v \times E )]=\epsilon_{0}\left[E^{2} v -( v \cdot E ) E \right] .

The power crossing the plane is P S · da,

\text { and } d a =2 \pi r d r \hat{ x } (see diagram). So

P=\epsilon_{0} \int\left(E^{2} v-E_{x}^{2} v\right) 2 \pi r d r ; E_{x}=E \cos \theta, \text { so } E^{2}-E_{x}^{2}=E^{2} \sin ^{2} \theta .

=2 \pi \epsilon_{0} v \int E^{2} \sin ^{2} \theta r d r . From Eq. 10.75,

E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}}                                  (10.75)

E =\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\gamma^{2}} \frac{\hat{ R }}{R^{2}\left[1-(v / c)^{2} \sin ^{2} \theta\right]^{3 / 2}} \text { where } \gamma \equiv \frac{1}{\sqrt{1-v^{2} / c^{2}}}.

=2 \pi \epsilon_{0} v\left(\frac{q}{4 \pi \epsilon_{0}}\right)^{2} \frac{1}{\gamma^{2}} \int_{0}^{\infty} \frac{r \sin ^{2} \theta}{R^{4}\left[1-(v / c)^{2} \sin ^{2} \theta\right]^{3}} d r . \quad \text { Now } r=a \tan \theta \Rightarrow d r=a \frac{1}{\cos ^{2} \theta} d \theta ; \frac{1}{R}=\frac{\cos \theta}{a}.

=\frac{v}{2 \gamma^{4}} \frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{a^{2}} \int_{0}^{\pi / 2} \frac{\sin ^{3} \theta \cos \theta}{\left[1-(v / c)^{2} \sin ^{2} \theta\right]^{3}} d \theta . \quad \text { Let } u \equiv \sin ^{2} \theta, \text { so } d u=2 \sin \theta \cos \theta d \theta .

=\frac{v q^{2}}{16 \pi \epsilon_{0} a^{2} \gamma^{4}} \int_{0}^{1} \frac{u}{\left[1-(v / c)^{2} u\right]^{3}} d u=\frac{v q^{2}}{16 \pi \epsilon_{0} a^{2} \gamma^{4}}\left(\frac{\gamma^{4}}{2}\right)=\frac{v q^{2}}{32 \pi \epsilon_{0} a^{2}} .

10.31

Related Answered Questions