Question 1.9: A particle of mass m has the wave function Ψ (x,t) = A e^-a[...

A particle of mass m has the wave function

Ψ (x,t) = A e^{-a[(mx^2/\hbar )+it]} ,

where A and a are positive real constants.

(a) Find A.

(b) For what potential energy function, V(x), is this a solution to the Schrödinger equation?

(c) Calculate the expectation values of x, x^2 , p, and p^2

(d) Find σ_x and σ_p . Is their product consistent with the uncertainty principle?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

1=2|A|^{2} \int_{0}^{\infty} e^{-2 a m x^{2} / \hbar} d x=2|A|^{2} \frac{1}{2} \sqrt{\frac{\pi}{(2 a m / \hbar)}}=|A|^{2} \sqrt{\frac{\pi \hbar}{2 a m}} A = \biggl(\frac{2 a m}{\pi \hbar }\biggr)^{1/4} .

(b)

\frac{\partial \Psi}{\partial t}=-i a \Psi ; \quad \frac{\partial \Psi}{\partial x}=-\frac{2 a m x}{\hbar} \Psi ; \quad \frac{\partial^{2} \Psi}{\partial x^{2}}=-\frac{2 a m}{\hbar}\left(\Psi+x \frac{\partial \Psi}{\partial x}\right)=-\frac{2 a m}{\hbar}\left(1-\frac{2 a m x^{2}}{\hbar}\right) \Psi .

Plug these into the Schrödinger equation, i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi :

V \Psi=i \hbar(-i a) \Psi+\frac{\hbar^{2}}{2 m}\left(-\frac{2 a m}{\hbar}\right)\left(1-\frac{2 a m x^{2}}{\hbar}\right) \Psi

= \left[\hbar a-\hbar a\left(1-\frac{2 a m x^{2}}{\hbar}\right)\right] \Psi=2 a^{2} m x^{2} \Psi , so V (x) = 2ma^2x^2 .

(c)

\langle x\rangle =\int_{-\infty}^{\infty} x|\Psi|^{2} d x = 0.    [Odd integrand.]

\left\langle x^{2}\right\rangle=2|A|^{2} \int_{0}^{\infty} x^{2} e^{-2 a m x^{2} / \hbar} d x=2|A|^{2} \frac{1}{2^{2}(2 a m / \hbar)} \sqrt{\frac{\pi \hbar}{2 a m}} = \frac{\hbar}{4 a m } .

\langle p\rangle = m \frac{d\langle x\rangle }{dt} = 0 .

\left\langle p^{2}\right\rangle=\int \Psi^{*}\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)^{2} \Psi d x=-\hbar^{2} \int \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}} d x .

=-\hbar^{2} \int \Psi^{*}\left[-\frac{2 a m}{\hbar}\left(1-\frac{2 a m x^{2}}{\hbar}\right) \Psi\right] d x=2 a m \hbar\left\{\int|\Psi|^{2} d x-\frac{2 a m}{\hbar} \int x^{2}|\Psi|^{2} d x\right\} .

=2 a m \hbar\left(1-\frac{2 a m \mid}{\hbar}\left\langle x^{2}\right\rangle\right)=2 a m \hbar\left(1-\frac{2 a m}{\hbar} \frac{\hbar}{4 a m}\right)=2 a m \hbar\left(\frac{1}{2}\right)= a m \hbar .

 

(d)

σ^2_x = \langle x^2\rangle – \langle x\rangle^2 = \frac{\hbar}{a m \hbar}     ⇒  σ_x = \sqrt{\frac{\hbar }{4 a m} } ;

σ^2_p = \langle p^2\rangle – \langle p\rangle^2 = a m \hbar   ⇒  σ_p = \sqrt{a m \hbar} .

σ_x σ_p = \sqrt{\frac{\hbar }{4 a m} } \sqrt{a m \hbar} = \frac{\hbar}{2} . This is (just barely) consistent with the uncertainty principle.

Related Answered Questions