Question 11.34: A particle starts out in the ground state of the infinite sq...

A particle starts out in the ground state of the infinite square well (on the interval 0 ≤ x ≤ a) . Now a wall is slowly erected, slightly off center:

V(x)=f(t) \delta\left(x-\frac{a}{2}-\epsilon\right) ,

where f(t) rises gradually from 0 to ∞. According to the adiabatic theorem, the particle will remain in the ground state of the evolving Hamiltonian.

(a) Find (and sketch) the ground state at t → ∞. Hint: This should be the ground state of the infinite square well with an impenetrable barrier at a/2 + ε. Note that the particle is confined to the (slightly) larger left “half” of the well.

(b) Find the (transcendental) equation for the ground state energy at time t.
Answer:

z \sin z=T[\cos z-\cos (z \delta)] ,

\text { where } z \equiv k a, T \equiv \operatorname{maf}(t) / \hbar^{2}, \delta \equiv 2 \epsilon / a \text {, and } k \equiv \sqrt{2 m E} / \hbar \text {. }

(c) Setting δ = 0 , solve graphically for z, and show that the smallest z goes from π to 2π as T goes from 0 to ∞. Explain this result.

(d) Now set δ = 0.01 and solve numerically for z, using  T = 0,1 , 5 , 20 , 100 , and 1000.

(e) Find the probability P_{r} that the particle is in the right “half” of the well, as a function of z and δ. Answer: P_{r}=1 /\left[1+\left(I_{+} / I_{-}\right)\right] , where I_{\pm} \equiv[1 \pm \delta-(1 / z) \sin (z(1 \pm \delta))] \sin ^{2}[z(1 \mp \delta) / 2] . Evaluate this expression numerically for the T’s and δ in part (d). Comment on your results.

(e) Plot the ground state wave function for those same values of T and δ.
Note how it gets squeezed into the left half of the well, as the barrier grows.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Schrödinger equation:

-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi, \quad \text { or } \quad \frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi \quad(k \equiv \sqrt{2 m E} / \hbar) \quad\left\{\begin{array}{l} 0<x<\frac{1}{2} a+\epsilon \\ \frac{1}{2} a+\epsilon<x<a \end{array}\right. .

Boundary conditions: \psi(0)=\psi\left(\frac{1}{2} a+\epsilon\right)=\psi(a)=0 .

Solution:

\text { (1) } 0<x<\frac{1}{2} a+\epsilon: \quad \psi(x)=A \sin k x+B \cos k x . \quad \text { But } \quad \psi(0)=0 \Rightarrow B=0 ,  and

\psi\left(\frac{1}{2} a+\epsilon\right)=0 \Rightarrow\left\{\begin{array}{l}k\left(\frac{1}{2} a+\epsilon\right)=n \pi \quad(n=1,2,3, \ldots) \Rightarrow E_{n}=n^{2} \pi^{2} \hbar^{2} / 2 m(a / 2+\epsilon)^{2} \\ \text { or else } A=0 \end{array}\right.,

\text { (2) } \frac{1}{2} a+\epsilon<x<a: \quad \psi(x)=F \sin k(a-x)+G \cos k(a-x) . \quad \text { But } \quad \psi(a)=0 \Rightarrow G=0 ,  and

\psi\left(\frac{1}{2} a+\epsilon\right)=0 \Rightarrow\left\{\begin{array}{l}k\left(\frac{1}{2} a-\epsilon\right)=n^{\prime} \pi \quad\left(n^{\prime}=1,2,3, \ldots\right) \Rightarrow E_{n^{\prime}}=\left(n^{\prime}\right)^{2} \pi^{2} \hbar^{2} / 2 m(a / 2-\epsilon)^{2} \\ \text { or else } \quad F=0 \end{array}\right. .

The ground state energy is \begin{cases}\text { either } \quad E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m\left(\frac{1}{2} a+\epsilon\right)^{2}} \quad(n=1), \quad \text { with } \quad F=0 \\\text { or else } \quad E_{1^{\prime}}=\frac{\pi^{2} \hbar^{2}}{2 m\left(\frac{1}{2} a-\epsilon\right)^{2}} \quad\left(n^{\prime}=1\right), \quad \text { with } \quad A=0\end{cases} .

Both are allowed energies, but E_1 is (slightly) lower (assuming ε is positive), so the ground state is

\psi(x)= \begin{cases}\sqrt{\frac{1}{2} a+\epsilon} \sin \left(\frac{\pi x}{\frac{1}{2} a+\epsilon}\right), & 0 \leq x \leq \frac{1}{2} a+\epsilon \\ 0, & \frac{1}{2} a+\epsilon \leq x \leq a\end{cases} .

(b)

-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+f(t) \delta\left(x-\frac{1}{2} a-\epsilon\right) \psi=E \psi \quad \Rightarrow \quad \psi(x)=\left\{\begin{array}{l}A \sin k x, & 0 \leq x<\frac{1}{2} a+\epsilon, \\ F \sin k(a-x), \frac{1}{2} a+\epsilon<x \leq a, \end{array}\right\} \quad \text { where } k \equiv \frac{\sqrt{2 m E}}{\hbar} .

Continuity in \psi \text { at } x=\frac{1}{2} a+\epsilon :

A \sin k\left(\frac{1}{2} a+\epsilon\right)=F \sin k\left(a-\frac{1}{2} a-\epsilon\right)=F \sin k\left(\frac{1}{2} a-\epsilon\right) \quad \Rightarrow F=A \frac{\sin k\left(\frac{1}{2} a+\epsilon\right)}{\sin k\left(\frac{1}{2} a-\epsilon\right)} .

Discontinuity in \psi^{\prime} \text { at } x=\frac{1}{2} a+\epsilon (Eq. 2.128):

\Delta\left(\frac{d \psi}{d x}\right)=-\frac{2 m \alpha}{\hbar^{2}} \psi(0)         (2.128).

-F k \cos k(a-x)-A k \cos k x=\frac{2 m f}{\hbar^{2}} A \sin k x \Rightarrow F \cos k\left(\frac{1}{2} a-\epsilon\right)+A \cos k\left(\frac{1}{2} a+\epsilon\right)=-\left(\frac{2 m f}{\hbar^{2} k}\right) A \sin k\left(\frac{1}{2} a+\epsilon\right) .

A \frac{\sin k\left(\frac{1}{2} a+\epsilon\right)}{\sin k\left(\frac{1}{2} a-\epsilon\right)} \cos k\left(\frac{1}{2} a-\epsilon\right)+A \cos k\left(\frac{1}{2} a+\epsilon\right)=-\left(\frac{2 T}{z}\right) A \sin k\left(\frac{1}{2} a+\epsilon\right) .

\sin k\left(\frac{1}{2} a+\epsilon\right) \cos k\left(\frac{1}{2} a-\epsilon\right)+\cos k\left(\frac{1}{2} a+\epsilon\right) \sin k\left(\frac{1}{2} a-\epsilon\right)=-\left(\frac{2 T}{z}\right) \sin k\left(\frac{1}{2} a+\epsilon\right) \sin k\left(\frac{1}{2} a-\epsilon\right) .

\sin k\left(\frac{1}{2} a+\epsilon+\frac{1}{2} a-\epsilon\right)=-\left(\frac{2 T}{z}\right) \frac{1}{2}\left[\cos k\left(\frac{1}{2} a+\epsilon-\frac{1}{2} a+\epsilon\right)-\cos k\left(\frac{1}{2} a+\epsilon+\frac{1}{2} a-\epsilon\right)\right] .

\sin k a=-\frac{T}{z}(\cos 2 k \epsilon-\cos k a) \Rightarrow z \sin z=T[\cos z-\cos (z \delta)] .

(c)

\sin z=\frac{T}{z}(\cos z-1) \quad \Rightarrow \quad \frac{z}{T}=\frac{\cos z-1}{\sin z}=-\tan (z / 2) \Rightarrow \quad \tan (z / 2)=-\frac{z}{T} .

\text { Plot } \tan (z / 2) \text { and }-z / 7 on the same graph, and look for intersections:

\text { As } t: 0 \rightarrow \infty, T: 0 \rightarrow \infty , and the straight line rotates counterclockwise from 6 o’clock to 3 o’clock, so the smallest z goes from π to 2π, and the ground state energy goes from k a=\pi \Rightarrow E(0)=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} .

(appropriate to a well of width a) to k a=2 \pi \Rightarrow E(\infty)=\frac{\hbar^{2} \pi^{2}}{2 m(a / 2)^{2}} . (appropriate for a well of width a/2.

(d) Mathematica yields the following table:

1000 100 20 5 1 0 T
6.21452 6.13523 5.72036 4.76031 3.67303 3.14159 z

(e)

P_{r}=\frac{I_{r}}{I_{r}+I_{l}}=\frac{1}{1+\left(I_{l} / I_{r}\right)} , where

I_{l}=\int_{0}^{a / 2+\epsilon} A^{2} \sin ^{2} k x d x=\left.A^{2}\left[\frac{1}{2} x-\frac{1}{4 k} \sin (2 k x)\right]\right|_{0} ^{a / 2+\epsilon} .

=A^{2}\left\{\frac{1}{2}\left(\frac{a}{2}+\epsilon\right)-\frac{1}{4 k} \sin \left[2 k\left(\frac{a}{2}+\epsilon\right)\right]\right\}=\frac{a}{4} A^{2}\left[1+\frac{2 \epsilon}{a}-\frac{1}{k a} \sin \left(k a+\frac{2 \epsilon}{a} k a\right)\right] .

=\frac{a}{4} A^{2}\left[1+\delta-\frac{1}{z} \sin (z+z \delta)\right] .

I_{r}=\int_{a / 2+\epsilon}^{a} F^{2} \sin ^{2} k(a-x) d x . \quad \text { Let } \quad u \equiv a-x, d u=-d x .

=-F^{2} \int_{a / 2-\epsilon}^{0} \sin ^{2} k u d u=F^{2} \int_{0}^{a / 2-\epsilon} \sin ^{2} k u d u=\frac{a}{4} F^{2}\left[1-\delta-\frac{1}{z} \sin (z-z \delta)\right] .

\frac{I_{l}}{I_{r}}=\frac{A^{2}[1+\delta-(1 / z) \sin (z+z \delta)]}{F^{2}[1-\delta-(1 / z) \sin (z-z \delta)]} . \quad \text { But (from (b)) } \frac{A^{2}}{F^{2}}=\frac{\sin ^{2} k(a / 2-\epsilon)}{\sin ^{2} k(a / 2+\epsilon)}=\frac{\sin ^{2}[z(1-\delta) / 2]}{\sin ^{2}[z(1+\delta) / 2]} .

=\frac{I_{+}}{I_{-}} , where I_{\pm} \equiv\left[1 \pm \delta-\frac{1}{z} \sin z(1 \pm \delta)\right] \sin ^{2}[z(1 \mp \delta) / 2] , P_{r}=\frac{1}{1+\left(I_{+} / I_{-}\right)} .

Using δ = 0.01 and the z’s from (d), Mathematica gives

1000 100 20 5 1 0 T
0.00248443 0.146529 0.401313 0.471116 0.486822 0.490001 P_r

\text { As } t: 0 \rightarrow \infty(\text { so } T: 0 \rightarrow \infty) , the probability of being in the right half drops from almost 1/2 to zero-the particle gets sucked out of the slightly smaller side, as it heads for the ground state in (a).

(f)

251
252
253

Related Answered Questions