Question 15.79: A pipe with an outside diameter of 140 mm and a wall thickne...

A pipe with an outside diameter of 140 mm and a wall thickness of 7 mm is subjected to the 16-kN load shown in Figure P15.79. The internal pressure in the pipe is 2.50 MPa, and the yield strength of the steel is \sigma_{Y} = 240 MPa.
(a) Determine the factors of safety predicted at points H and K by the maximum-shear-stress theory of failure.
(b) Determine the Mises equivalent stresses at points H and K.
(c) Determine the factors of safety at points H and K predicted by the maximum-distortion-energy theory.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{aligned}&d=140  mm -2(7  mm )=126  mm \\&A=\frac{\pi}{4}\left[(140  mm )^{2}-(126  mm )^{2}\right]=2,924.823   mm ^{2} \\&J=\frac{\pi}{32}\left[(140  mm )^{4}-(126  mm )^{4}\right]=12.970 \times 10^{6}  mm ^{4} \\&I_{y}=I_{z}=\frac{\pi}{64}\left[(140  mm )^{4}-(126  mm )^{4}\right]=6.485 \times 10^{6}  mm ^{4} \\&Q=\frac{1}{12}\left[(140  mm )^{3}-(126  mm )^{3}\right]=61,968.667  mm ^{3}\end{aligned}

Vector expression for the 16-kN load:
The 16-kN load can be expressed in vector form as:

F =-(16  kN ) \sin 55^{\circ} j +(16  kN ) \cos 55^{\circ} k

The equivalent forces acting at H and K are thus

\begin{aligned}&F_{x}=0  N \\&F_{y}=-13,106.433  N \\&F_{z}=9,177.223  N\end{aligned}

The position vector from the section of interest to a point on the line of action of F is:

r =(0.7  m ) i +(1.3  m ) k

The equivalent moments are found from the cross-product r × F.

\begin{aligned}r \times F &=\left|\begin{array}{ccc} i & j & k \\0.7 & 0 & 1.3 \\0 & -13,106.433 & 9,177.223\end{array}\right| \\&=17,038.363  N – m  i -6,424.056  N – m  j -9,174.503  N – m  k\end{aligned}

Equivalent moments:

\begin{aligned}M_{x} &=17.0384 \times 10^{6}  N – mm \\M_{y} &=-6.4241 \times 10^{6}  N – mm \\M_{z} &=-9.1745 \times 10^{6}  N – mm\end{aligned}

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

(a) Consider point H.
Force F_{y} does not cause either a normal stress or a shear stress at H.

Force F_{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{(9,177.223  N )\left(61,968.667  mm ^{3}\right)}{\left(6.485 \times 10^{6}  mm ^{4}\right)[(140  mm )-(126  mm )]}=6.264  MPa

Moment M _{x}, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{\left(17.0384 \times 10^{6}  N – mm \right)(140  mm / 2)}{12.970 \times 10^{6}  mm ^{4}}=91.956  MPa

Moment M _{y} does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

Moment M _{z} creates bending stress at H. The magnitude of this stress is:

\sigma_{x}=\frac{M_{z} y}{I_{z}}=\frac{\left(9.1745 \times 10^{6}  N – mm \right)(140  mm / 2)}{6.485 \times 10^{6}  mm ^{4}}=99.031  MPa

Stresses due to internal pressure:
The 2.50-MPa internal fluid pressure creates tension normal stresses in the 7-mm-thick wall of the pipe.
The longitudinal stress (which acts in the x direction) in the pipe wall is:

\sigma_{\text {long }}=\frac{p d}{4 t}=\frac{(2.50  MPa )(126  mm )}{4(7  mm )}=11.25  MPa ( T )

and the circumferential stress is:

\sigma_{\text {hoop }}=\frac{p d}{2 t}=\frac{(2.50  MPa )(126  mm )}{2(7  mm )}=22.50  MPa ( T )

The hoop stress acts in the z direction at H and in the y direction at K.

 

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=99.030  MPa +11.25  MPa =110.280  MPa ( T ) \\\sigma_{z} &=22.50  MPa ( T ) \\\tau_{x z} &=6.264  MPa +91.956  MPa =98.220  MPa\end{aligned}

Principal stress calculations for point H:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(110.280  MPa )+(22.50  MPa )}{2} \pm \sqrt{\left(\frac{(110.280  MPa )-(22.50  MPa )}{2}\right)^{2}+(-98.220  MPa )^{2}} \\&=66.390  MPa \pm 107.580  MPa\end{aligned}

therefore,        \sigma_{p 1}=173.970  MPa                 and                       \sigma_{p 2}=-41.190  MPa

 

 

Consider point K.
Force F _{y} creates a transverse shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{(13,106.433  N )\left(61,968.667  mm ^{3}\right)}{\left(6.485 \times 10^{6}  mm ^{4}\right)[(140  mm )-(126  mm )]}=8.946  MPa

Force F _{z} does not cause either a normal stress or a shear stress at K.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{\left(17.0384 \times 10^{6}  N – mm \right)(140  mm / 2)}{12.970 \times 10^{6}  mm ^{4}}=91.956  MPa

Moment M _{y} creates bending stress at K. The magnitude of this stress is:

\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{\left(6.4241 \times 10^{6}  N – mm \right)(140  mm / 2)}{6.485 \times 10^{6}  mm ^{4}}=69.341  MPa

Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

 

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=-69.341  MPa +11.25  MPa =58.091  MPa ( C ) \\\sigma_{y} &=22.50  MPa ( T ) \\\tau_{x y} &=-8.946  MPa -91.956  MPa =-100.902  MPa\end{aligned}

Principal stress calculations for point K:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(-58.091  MPa )+(22.50  MPa )}{2} \pm \sqrt{\left(\frac{(-58.091  MPa )-(22.50  MPa )}{2}\right)^{2}+(-100.902  MPa )^{2}} \\&=-17.796  MPa \pm 108.651  MPa\end{aligned}

therefore,      \sigma_{p 1}=90.855  MPa                and                  \sigma_{p 2}=-126.446  MPa

 

(a) Maximum-Shear-Stress Theory
Element H:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|173.970  MPa -(-41.190  MPa )|=215.160  MPa

The factor of safety associated with this state of stress is:

FS _{H}=\frac{240  MPa }{215.160  MPa }=1.115

Element K:

\left|\sigma_{p 1}-\sigma_{p 2}\right|=|90.855  MPa -(-126.446  MPa )|=217.301  MPa

The factor of safety associated with this state of stress is:

FS _{K}=\frac{240  MPa }{217.301  MPa }=1.104

 

(b) Mises equivalent stresses at points H and K:
Element H:

\begin{aligned}\sigma_{M, H} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(173.970  MPa )^{2}-(173.970  MPa )(-41.190  MPa )+(-41.190  MPa )^{2}\right]^{1 / 2} \\&=197.809  MPa =197.8  MPa\end{aligned}

Element K:

\begin{aligned}\sigma_{M, K} &=\left[\sigma_{p 1}^{2}-\sigma_{p 1} \sigma_{p 2}+\sigma_{p 2}^{2}\right]^{1 / 2} \\&=\left[(90.855  MPa )^{2}-(90.855  MPa )(-126.446  MPa )+(-126.446  MPa )^{2}\right]^{1 / 2} \\&=189.028  MPa =189.0  MPa\end{aligned}

 

(c) Maximum-Distortion-Energy Theory:
Element H: 

FS _{H}=\frac{240  MPa }{197.809  MPa }=1.213

Element K:

FS _{K}=\frac{240  MPa }{189.028  MPa }=1.270

 

 

 

 

 

 

 

Related Answered Questions