Question : (a) Plot the wave impedances for an air-filled waveguide ver...

(a) Plot the wave impedances for an air-filled waveguide versus the ratio \left( f/{ f }_{ c } \right)  for TM and TE modes. (b) Compare the value of { Z }_{ TM } and { Z }_{ TE } at f=1.1{ f }_{ c } and 2.2{ f }_{ c }

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We use Eqs(9-34) and (9-39) for { Z }_{ TM } and { Z }_{ TE } respectively. For air, \eta ={ \eta }_{ 0 }=120\pi \left( \Omega \right) =377\left( \Omega \right).

 

a) The normalized wave impedances are plotted as shown.

 

b) { Z }_{ TM }={ \eta }_{ 0 }\sqrt { 1-{ \left( \frac { { f }_{ c } }{ f } \right) }^{ 2 } }

 

{ Z }_{ TE }=\frac { { \eta }_{ 0 } }{ \sqrt { 1-{ \left( \frac { { f }_{ c } }{ f } \right) }^{ 2 } } }

 

At f=1.1{ f }_{ c },\quad \sqrt { 1-{ \left( \frac { 1 }{ 1.1 } \right) }^{ 2 } } =0.417

 

{ Z }_{ TM }=0.417{ \eta }_{ 0 }=157\left( \Omega \right)

 

{ Z }_{ TE }=\frac { { \eta }_{ 0 } }{ 0.417 } =904\left( \Omega \right)

 

At f=2.2{ f }_{ c },\quad \sqrt { 1-{ \left( \frac { { f }_{ c } }{ f } \right) }^{ 2 } } =\sqrt { 1-{ \left( \frac { 1 }{ 2.2 } \right) }^{ 2 } } =0.891

 

{ Z }_{ TM }=0.891{ \eta }_{ 0 }=336\left( \Omega \right) ,\quad { Z }_{ TE }=\frac { { \eta }_{ 0 } }{ 0.981 } =423\left( \Omega \right)

 

{ Z }_{ TM }=\eta \sqrt { 1-{ \left( \frac { { f }_{ c } }{ f } \right) }^{ 2 } } \quad \left( \Omega \right) \quad \quad \left( 9-34 \right)

 

{ Z }_{ TE }=\frac { { \eta }_{ 0 } }{ \sqrt { 1-{ \left( { f }_{ c }/f \right) }^{ 2 } } } \quad \quad\quad \left( \Omega \right) \quad \quad \left( 9-39 \right)
1