Question 17.1: A polyamide A-3 flat belt 6 in wide is used to transmit 15 h...

A polyamide A-3 flat belt 6 in wide is used to transmit 15 hp under light shock conditions where K_{s}=1.25, and a factor of safety equal to or greater than 1.1 is appropriate. The pulley rotational axes are parallel and in the horizontal plane. The shafts are 8 ft apart. The 6-in driving pulley rotates at 1750 rev/min in such a way that the loose side is on top. The driven pulley is 18 in in diameter. See Fig. 17–10. The factor of safety is for unquantifiable exigencies.

(a) Estimate the centrifugal tension F_{c} and the torque T.

(b) Estimate the allowable F_{1}, F_{2}, F_{i} and allowable power H _{a} .

(c) Estimate the factor of safety. Is it satisfactory?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Eq. (17–1):

 

\begin{aligned}\theta_{d} &=\pi-2 \sin ^{-1} \frac{D-d}{2 C} \\\theta_{D} &=\pi+2 \sin ^{-1} \frac{D-d}{2 C}\end{aligned} (17–1)

 

Table 17–2 Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)
Material Specification Size, in Minimum Pulley Diameter, in Allowable Tension per Unit Width at 600 ft/min,  lbf/in Specific Weight, \text { Ibf/in }{ }^{3} Coefficient of Friction
Leather 1 ply t=\frac{11}{64} 3 30 0.035–0.045 0.4
t=\frac{13}{64} 3 \frac{1}{2} 33 0.035–0.045 0.4
2 ply t=\frac{18}{64} 4 \frac{1}{2} 41 0.035–0.045 0.4
t=\frac{20}{64} 6^{a} 50 0.035–0.045 0.4
t=\frac{23}{64} 9^{a} 60 0.035–0.045 0.4
\text { Polyamide }^{b} F -0^{c} t = 0.03 0.6 10 0.035 0.5
F -1^{c} t = 0.05 1 35 0.035 0.5
F -2^{c} t = 0.07 2.4 60 0.051 0.5
A -2^{c} t = 0.11 2.4 60 0.037 0.8
A -3^{c} t = 0.13 4.3 100 0.042 0.8
A -4^{c} t = 0.20 9.5 175 0.039 0.8
A -5^{c} t = 0.25 13.5 275 0.039 0.8
\text { Urethane }^{d} w=0.50 t = 0.062 see 5.2^{e} 0.038–0.045 0.7
w=0.75 t = 0.078 Table 9.8^{e} 0.038–0.045 0.7
w=1.25 t = 0.090 17–3 18.9^{e} 0.038–0.045 0.7
Round d=\frac{1}{4} See 8.3^{e} 0.038–0.045 0.7
d=\frac{3}{8} Table 18.6^{e} 0.038–0.045 0.7
d=\frac{1}{2} 17–3 33.0^{e} 0.038–0.045 0.7
d=\frac{3}{4} 74.3^{e} 0.038–0.045 0.7

 

*Average values of C_{p} for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

{ }^{a} Add 2 in to pulley size for belts 8 in wide or more.

\text { bSource: } Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

{ }^{c} \text { Friction c } cover of acrylonitrile-butadiene rubber on both sides.

{ }^{d} \text { Source: }: Eagle Belting Co., Des Plaines, Ill.

{ }^{c} At 6% elongation; 12% is maximum allowable value.

 

\phi=\theta_{d}=\pi-2 \sin ^{-1}\left[\frac{18-6}{2(8) 12}\right]=3.0165 rad

 

\exp (f \phi)=\exp [0.8(3.0165)]=11.17

 

V=\pi(6) 1750 / 12=2749 ft / min

 

Table 17–2:

 

w=12 \gamma b t=12(0.042) 6(0.130)=0.393 lbf / ft

 

Eq. (e):

 

F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{w}{32.17}\left(\frac{V}{60}\right)^{2} (e)

 

F_{c}=\frac{w}{g}\left(\frac{V}{60}\right)^{2}=\frac{0.393}{32.17}\left(\frac{2749}{60}\right)^{2}=25.6 lbf

 

\begin{aligned}T &=\frac{63025 H_{\text {nom }} K_{s} n_{d}}{n}=\frac{63025(15) 1.25(1.1)}{1750} \\&=742.8 lbf \cdot \text { in }\end{aligned}

 

(b) The necessary \left(F_{1}\right)_{a}-F_{2} to transmit the torque T, from Eq. (h), is

 

F_{1}-F_{2}=\frac{2 T}{d} (h)

 

\left(F_{1}\right)_{a}-F_{2}=\frac{2 T}{d}=\frac{2(742.8)}{6}=247.6 lbf

 

From Table 17–2 F_{a}=100 lbf. For polyamide belts C_{v}=1,, and from Table 17–4 C_{p}=0.70. From Eq. (17–12) the allowable largest belt tension (F1)a is

 

Table 17–4 Pulley Correction Factor C_{P} for Flat Belts*
Material Small-Pulley Diameter, in
1.6 to 4 4.5 to 8 9 to 12.5 14, 16 18 to 31.5 Over 31.5
Leather 0.5 0.6 0.7 0.8 0.9 1.0
Polyamide, F–0 0.95 1.0 1.0 1.0 1.0 1.0
F–1 0.70 0.92 0.95 1.0 1.0 1.0
F–2 0.73 0.86 0.96 1.0 1.0 1.0
A–2 0.73 0.86 0.96 1.0 1.0 1.0
1A–3 0.70 0.87 0.94 0.96 1.0
A–4 0.71 0.80 0.85 0.92
A–5 0.72 0.77 0.91

 

*Average values of C_{P} for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

 

\left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v} (17–12)

 

\left(F_{1}\right)_{a}=b F_{a} C_{p} C_{v}=6(100) 0.70(1)=420 lbf

 

then

 

F_{2}=\left(F_{1}\right)_{a}-\left[\left(F_{1}\right)_{a}-F_{2}\right]=420-247.6=172.4 lbf

 

and from Eq. (i)

 

H=\frac{\left(F_{1}-F_{2}\right) V}{33000} (i)

 

F_{i}=\frac{\left(F_{1}\right)_{a}+F_{2}}{2}-F_{c}=\frac{420+172.4}{2}-25.6=270.6 lbf

 

The combination \left(F_{1}\right)_{a}, F_{2}, \text { and } F_{i} will transmit the design power of 15(1.25)(1.1) = 20.6 hp and protect the belt. We check the friction development by solving Eq. (17–7) for f^{\prime}:

 

\frac{F_{1}-m r^{2} \omega^{2}}{F_{2}-m r^{2} \omega^{2}}=\frac{F_{1}-F_{c}}{F_{2}-F_{c}}=\exp (f \phi) (17–7)

 

f^{\prime}=\frac{1}{\phi} \ln \frac{\left(F_{1}\right)_{a}-F_{c}}{F_{2}-F_{c}}=\frac{1}{3.0165} \ln \frac{420-25.6}{172.4-25.6}=0.328

 

From Table 17–2, f = 0.8. Since f^{\prime} < f , that is, 0.328 < 0.80, there is no danger of slipping.

(c)

 

n_{f s}=\frac{H}{H_{ nom } K_{s}}=\frac{20.6}{15(1.25)}=1.1 (as expected)

 

The belt is satisfactory and the maximum allowable belt tension exists. If the initial tension is maintained, the capacity is the design power of 20.6 hp.

Related Answered Questions