(a) Eq. (17–1):
θ_{d} = π − 2 sin^{−1} \frac{D − d}{2C}
θ_{D} = π + 2 sin^{−1} \frac{D − d}{2C} (17–1)
\phi= θ_{d} = π − 2 sin^{−1} \left[ \frac{18 − 6}{2(8)12}\right]= 3.0165 rad
exp( f \phi) = exp[0.8(3.0165)] = 11.17
V = π(6)1750/12 = 2749 ft/min
Table 17–2:
w = 12 γ bt = 12(0.042)6(0.130) = 0.393 lbf/ft
Table 17–2
Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)
Coefficient of Friction |
Specific Weight,
lbf/in^{3} |
Allowable Tension per Unit Width at 600 ft/min,
lbf/in |
Minimum Pulley Diameter,
in |
Size,
in |
Specification |
Material |
0.4 |
0.035–0.045 |
30 |
3 |
t =\frac{11}{64} |
1 ply |
Leather |
0.4 |
0.035–0.045 |
33 |
3\frac{1}{2} |
t =\frac{13}{64} |
|
|
0.4 |
0.035–0.045 |
41 |
4\frac{1}{2} |
t =\frac{18}{64} |
2 ply |
|
0.4 |
0.035–0.045 |
50 |
6^{a} |
t=\frac{20}{64} |
|
|
0.4 |
0.035–0.045 |
60 |
9^{a} |
t=\frac{23}{64} |
|
|
0.5 |
0.035 |
10 |
0.60 |
t= 0.03 |
F–0^{c} |
Polyamide^{b} |
0.5 |
0.035 |
35 |
1.0 |
t = 0.05 |
F–1^{c} |
|
0.5 |
0.051 |
60 |
2.4 |
t = 0.07 |
F–2^{c} |
|
0.8 |
0.037 |
60 |
2.4 |
t = 0.11 |
A–2^{c} |
|
0.8 |
0.042 |
100 |
4.3 |
t = 0.13 |
A–3^{c} |
|
0.8 |
0.039 |
175 |
9.5 |
t = 0.20 |
A–4^{c} |
|
0.8 |
0.039 |
275 |
13.5 |
t = 0.25 |
A–5^{c} |
|
0.7 |
0.038–0.045 |
5.2^{e} |
See |
t = 0.062 |
w = 0.50 |
Urethane^{d} |
0.7 |
0.038–0.045 |
9.8^{e} |
Table |
t = 0.078 |
w = 0.75 |
|
0.7 |
0.038–0.045 |
18.9^{e} |
17–3 |
t = 0.090 |
w = 1.25 |
|
0.7 |
0.038–0.045 |
8.3^{e} |
See |
d=\frac{1}{4} |
Round |
|
0.7 |
0.038–0.045 |
18.6^{e} |
Table |
d=\frac{3}{8} |
|
|
0.7 |
0.038–0.045 |
33.0^{e} |
17–3 |
d=\frac{1}{2} |
|
|
0.7 |
0.038–0.045 |
74.3^{e} |
|
d=\frac{3}{4} |
|
|
a: Add 2 in to pulley size for belts 8 in wide or more.
b: Source: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.
c: Friction cover of acrylonitrile-butadiene rubber on both sides.
d: Source: Eagle Belting Co., Des Plaines, Ill.
e: At 6% elongation; 12% is maximum allowable value.
Table 17–3
Minimum Pulley Sizes for Flat and Round Urethane Belts. (Listed are the Pulley Diameters in Inches)
Source: Eagle Belting Co., Des Plaines, Ill.
Ratio of Pulley Speed to Belt Length,
rev/(ft • min) |
Belt Style |
Belt Style |
500 to 1000 |
250 to 499 |
Up to 250 |
0.50 |
0.44 |
0.38 |
0.50 × 0.062 |
Flat |
0.75 |
0.63 |
0.50 |
0.75 × 0.078 |
|
0.75 |
0.63 |
0.50 |
1.25 × 0.090 |
|
2.00 |
1.75 |
1.50 |
\frac{1}{4} |
Round |
3.00 |
2.62 |
2.25 |
\frac{3}{8} |
|
4.00 |
3.50 |
3.00 |
\frac{1}{2} |
|
7.00 |
6.00 |
5.00 |
\frac{3}{4} |
|
Eq. (e):
F_{c} =\frac{w}{g} \left(\frac{V}{60}\right)^{2}=\frac{w}{32.17} \left(\frac{V}{60}\right)^{2} (e)
F_{c} =\frac{w}{g} \left(\frac{V}{60}\right)^{2}=\frac{0.393}{32.17} \left(\frac{2749}{60}\right)^{2}= 25.6 lbf
T =\frac{63 025H_{nom}K_{s}n_{d}}{n} =\frac{63 025(15)1.25(1.1)}{1750}
= 742.8 lbf · in
(b) The necessary (F_{1})_{a} − F_{2} to transmit the torque T, from Eq. (h), is
F_{1} − F_{2} =\frac{2T}{D} =\frac{T}{D/2} (h)
(F_{1})_{a} − F_{2} =\frac{2T}{d} =\frac{2(742.8)}{6} = 247.6 lbf
From Table 17–2 F_{a} = 100 lbf. For polyamide belts C_{v} = 1, and from Table 17–4 C_{p} = 0.70. From Eq. (17–12) the allowable largest belt tension (F_{1})a is
(F_{1})_{a} = bF_{a}C_{p}C_{v} = 6(100)0.70(1) = 420 lbf
Table 17–4
Pulley Correction Factor C_{p} for Flat Belts*
Small-Pulley Diameter, in |
Material |
Over 31.5 |
18 to 31.5 |
14, 16 |
9 to 12.5 |
4.5 to 8 |
1.6 to 4 |
1.0 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
Leather |
1.0 |
1.0 |
1.0 |
1.0 |
1.0 |
0.95 |
F–0 |
Polyamide, |
1.0 |
1.0 |
1.0 |
0.95 |
0.92 |
0.70 |
F–1 |
|
1.0 |
1.0 |
1.0 |
0.96 |
0.86 |
0.73 |
F–2 |
|
1.0 |
1.0 |
1.0 |
0.96 |
0.86 |
0.73 |
A–2 |
|
1.0 |
0.96 |
0.94 |
0.87 |
0.70 |
__ |
A–3 |
|
0.92 |
0.85 |
0.80 |
0.71 |
__ |
__ |
A–4 |
|
0.91 |
0.77 |
0.72 |
__ |
__ |
__ |
A–5 |
|
*Average values of C_{p} for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.
then
F_{2} = (F_{1})_{a} − [(F_{1})_{a} − F_{2}] = 420 − 247.6 = 172.4 lbf
and from Eq. (i)
F_{i} =\frac{F_{1} + F_{2}}{2}− F_{c} (i )
F_{i} =\frac{(F_{1})_{a} + F_{2}}{2} − F_{c} =\frac{420 + 172.4}{2} − 25.6 = 270.6 lbf
The combination (F_{1})_{a}, F_{2}, and F_{i} will transmit the design power of 15(1.25)(1.1) = 20.6 hp and protect the belt. We check the friction development by solving Eq. (17–7) for f ^{′}:
\frac{F_{1} − mr^{2}ω^{2}}{F_{2} − mr^{2}ω^{2}} =\frac{F_{1} − F_{c}}{F_{2} − F_{c}} =exp( f \phi) (17–7)
f ^{′} =\frac{1}{\phi} ln \frac{(F_{1})_{a} − F_{c}}{F_{2} − F_{c}} =\frac{1}{3.0165} ln \frac{420 − 25.6}{172.4 − 25.6} = 0.328
From Table 17–2, f = 0.8. Since f ^{′} < f , that is, 0.328 < 0.80, there is no danger of slipping.
(c)
n_{f s} =\frac{H}{H_{nom}K_{s}} =\frac{20.6}{15(1.25)} = 1.1 (as expected)
The belt is satisfactory and the maximum allowable belt tension exists. If the initial tension is maintained, the capacity is the design power of 20.6 hp.