Question 12.6.3: (A Predator-Prey Model) Consider the predator-prey model gov...

(A Predator-Prey Model) Consider the predator-prey model governed by the system

\begin{aligned}&x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t), \\&x_{2}^{\prime}(t)=-x_{1}(t)+x_{2}(t) .\end{aligned}

If the initial populations are x_{1}(0)=x_{2}(0)=1000, determine the populations of the two species for t>0.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here A=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right) with characteristic equation \lambda^{2}-2 \lambda+2=0, complex roots \lambda_{1}=1+i and \lambda_{2}=1-i, and eigenvectors \mathbf{v}_{1}=\left(\begin{array}{l}1 \\ i\end{array}\right) and \mathbf{v}_{2}=\left(\begin{array}{c}1 \\ -i\end{array}\right) .^{\dagger} Then

C=\left(\begin{array}{cc}1 & 1 \\i & -i\end{array}\right) \quad C^{-1}=-\frac{1}{2 i}\left(\begin{array}{rr}-i & -1 \\-i & 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{rr}1 & -i \\1 & i\end{array}\right) \quad D=\left(\begin{array}{cc}1+i & 0 \\0 & 1-i\end{array}\right)

and

e^{D t}=\left(\begin{array}{cc}e^{(1+i) t} & 0 \\0 & e^{(1-i) t}\end{array}\right)

Now, by Euler’s formula (see Appendix 3), e^{i t}=\cos t+i \sin t. Thus e^{(1+i) t}=e^{t} e^{i t}= e^{t}(\cos t+i \sin t) . Similarly, e^{(1-i) t}=e^{t} e^{-i t}=e^{t}(\cos t-i \sin t). Thus

e^{D t}=e^{t}\left(\begin{array}{cc}\cos t+i \sin t & 0 \\0 & \cos t-i \sin t\end{array}\right)

and

\begin{aligned}e^{A t} &=C e^{D t} C^{-1}=\frac{e^{t}}{2}\left(\begin{array}{cc}1 & 1 \\i & -i\end{array}\right)\left(\begin{array}{cc}\cos t+i \sin t & 0 \\0 & \cos t-i \sin t\end{array}\right)\left(\begin{array}{cc}1 & -i \\1 & i\end{array}\right) \\&=\frac{e^{t}}{2}\left(\begin{array}{cc}1 & 1 \\i & -i\end{array}\right)\left(\begin{array}{cc}\cos t+i \sin t & -i \cos t+\sin t \\\cos t-i \sin t & i \cos t+\sin t\end{array}\right) \\&=\frac{e^{t}}{2}\left(\begin{array}{cc}2 \cos t & 2 \sin t \\-2 \sin t & 2 \cos t\end{array}\right)=e^{t}\left(\begin{array}{cc}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\end{aligned}

Finally,

\mathbf{x}(t)=e^{A t} \mathbf{x}(0)=e^{t}\left(\begin{array}{rr}\cos t & \sin t \\-\sin t & \cos t\end{array}\right)\left(\begin{array}{l}1000 \\1000\end{array}\right)=\left(\begin{array}{l}1000 e^{t}(\cos t+\sin t) \\1000 e^{t}(\cos t-\sin t)\end{array}\right)

The prey species is eliminated when 1000 e^{t}(\cos t-\sin t)=0 or when \sin t=\cos t. The first positive solution of this last equation is t=\pi / 4 \approx 0.7854 year \approx 9.4 months.

Related Answered Questions

Differentiating the first equation and substitutin...