Question 12.6: (a) Prove properties 12.31, 12.32, 12.33, and 12.34. (b) Sho...

(a) Prove properties 12.31, 12.32, 12.33, and 12.34.

\rho^{\dagger}=\rho            (12.31).

\operatorname{Tr}(\rho)=1            (12.32).

\langle A\rangle=\operatorname{Tr}(\rho A )            (12.33).

i \hbar \frac{d \hat{\rho}}{d t}=[\hat{H}, \hat{\rho}] , \text { (if } \frac{d p_{k}}{d t}=0 \text { for all } k \text { ) }            (12.34).

(b) Show that \operatorname{Tr}\left(\rho^{2}\right) \leq 1 , and equal to 1 only if ρ represents a pure state.

(c) Show that ρ² = ρ if and only if ρ represents a pure state.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Equation 12.31: As in Problem 12.4(a), \hat{\rho}^{\dagger}=\left(\sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right|\right)^{\dagger}=\sum_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| p_{k}^{*} , Since p_k is real,

\rho^{\dagger}=\rho            (12.31).

\hat{\rho}^{\dagger}=\hat{\rho} .

Equation 12.32:

\operatorname{Tr}(\rho)=1            (12.32).

\operatorname{Tr}[\rho]=\sum_{i} \rho_{i i}=\sum_{i} \sum_{k} p_{k}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid e_{i}\right\rangle=\sum_{k} p_{k}\left\langle\Psi_{k}\left|\sum_{i}\right| e_{i}\right\rangle\left\langle e_{i}|| \Psi_{k}\right\rangle .

=\sum_{k} p_{k}\left\langle\Psi_{k} \mid \Psi_{k}\right\rangle=\sum_{k} p_{k}=1 .

In the last two steps I used the fact that each wave function is normalized, and Equation (12.30).

0 \leq p_{k} \leq 1 \text { and } \sum_{k} p_{k}=1                    (12.30).

Equation 12.33:

\langle A\rangle=\operatorname{Tr}(\rho A )            (12.33).

\operatorname{Tr}(\rho A )=\sum_{i}(\rho A )_{i i}=\sum_{i} \sum_{j} \rho_{i j} A_{j i}=\sum_{i} \sum_{j} \sum_{k} p_{k}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid e_{j}\right\rangle\left\langle e_{j}|\hat{A}| e_{i}\right\rangle .

=\sum_{k} p_{k}\left\langle\Psi_{k}\left|\left(\sum_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|\right) \hat{A}\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi_{k}\right\rangle=\sum_{k} p_{k}\left\langle\Psi_{k}|\hat{A}| \Psi_{k}\right\rangle=\langle A\rangle .

Equation 12.34: As in Problem 12.4(b):

i \hbar \frac{d \hat{\rho}}{d t}=[\hat{H}, \hat{\rho}] , \text { (if } \frac{d p_{k}}{d t}=0 \text { for all } k \text { ) }            (12.34).

i \hbar \frac{d}{d t} \hat{\rho}=i \hbar \sum_{k} p_{k}\left(\left|\dot{\Psi}_{k}\right\rangle\left\langle\Psi_{k}|+| \Psi_{k}\right\rangle\left\langle\dot{\Psi}_{k}\right|\right)=\sum_{k} p_{k}\left(\hat{H}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}|-| \Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \hat{H}\right) .

=\hat{H} \hat{\rho}-\hat{\rho} \hat{H}=[\hat{H}, \hat{\rho}] .

(b)

\operatorname{Tr}\left(\rho^{2}\right)=\sum_{i}\left(\rho^{2}\right)_{i i}=\sum_{i} \sum_{k} \sum_{j} p_{k} p_{j}\left\langle e_{i} \mid \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\left\langle\Psi_{j} \mid e_{i}\right\rangle .

=\sum_{k} \sum_{j} p_{k} p_{j}\left\langle\Psi_{j}\left|\left(\sum_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)\right| \Psi_{k}\right\rangle\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle=\sum_{k} \sum_{j} p_{k} p_{j}\left|\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\right|^{2} .

The wave functions are normalized, so \left|\left\langle\Psi_{k} \mid \Psi_{j}\right\rangle\right| \leq 1 , with equality if and only if k = j. Therefore, unless this is a pure state

\operatorname{Tr}\left(\rho^{2}\right)<\sum_{k} \sum_{j} p_{k} p_{j}=\sum_{k} p_{k} \sum_{j} p_{j}=1 . QED

(c) We already know that \rho^{2}=\rho for a pure state. In part (b) we proved that \operatorname{Tr}\left(\rho^{2}\right)<1 for a non-pure state, whereas from (a) Tr(ρ) = 1 for any density matrix. Therefore, for a non-pure state \rho^{2} \neq \rho (they have different traces). QED

Related Answered Questions