Question 6.12: A pump delivers 0.6 hp to water at 68°F, flowing in a 6-in-d...

A pump delivers 0.6 hp to water at 68°F, flowing in a 6-in-diameter asphalted cast iron horizontal pipe at V = 6 ft/s. What is the proper pipe length to match these conditions?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Approach: Find h_f from the known power and find f from Re_d and ε/d. Then find L.

• Water properties: For water at 68°F, Table A.3, converting to BG units, ρ = 1.94 slug/ft^3 and µ = 2.09E-5 slug/(ft-s).

Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F)
Liquid \rho,  kg/m^3 µ, kg/(m·s) Y, N/m^* p_{\nu},  N/m^2 Bulk modulus K, N/m^2 Viscosity
parameter C^{\dagger}
Ammonia 608 2.20 E-4 2.13 E-2 9.10 E+5 1.82 E+9 1.05
Benzene 881 6.51 E-4 2.88 E-2 1.01 E+4 1.47 E+9 4.34
Carbon tetrachloride 1590 9.67 E-4 2.70 E-2 1.20 E+4 1.32 E+9 4.45
Ethanol 789 1.20 E-3 2.28 E-2 5.73 E+3 1.09 E+9 5.72
Ethylene glycol 1117 2.14 E-2 4.84 E-2 1.23 E+1 3.05 E+9 11.7
Freon 12 1327 2.62 E-4 7.95 E+8 1.76
Gasoline 680 2.92 E-4 2.16 E-2 5.51 E+4 1.3 E+9 3.68
Glycerin 1260 1.49 6.33 E-2 1.43 E-2 4.35 E+9 28.0
Kerosene 804 1.92 E-3 2.8 E-2 3.11 E+3 1.41 E+9 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.85 E+10 1.07
Methanol 791 5.98 E-4 2.25 E-2 1.34 E+4 1.03 E+9 4.63
SAE 10W oil 870 1.04 E-1^{\ddagger} 3.6 E-2 1.31 E+9 15.7
SAE 10W30 oil 876 1.7 E-1^{\ddagger} 14.0
SAE 30W oil 891 2.9 E-1^{\ddagger} 3.5 E-2 1.38 E+9 18.3
SAE 50W oil 902 8.6 E-^{\ddagger} 20.2
Water 998 1.00 E-3 7.28 E-2 2.34 E+3 2.19 E+9 Table A.1
Seawater (30%) 1025 1.07 E-3 7.28 E-2 2.34 E+3 2.33 E+9 7.28

^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression

\frac{\mu}{\mu_{20^{\circ}C}} \approx \exp \left[C\left(\frac{293  K}{T  K} -1\right)\right]

with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.

Table A.1 Viscosity and Density of Water at 1 atm
T,°C \rho,  kg/m^3 µ, N·s/m^2 \nu,  m^2/s T,°F \rho,  slug/ft^3 \mu,  Ib\cdot s/ft^2 \nu,  ft^2/s
0 1000 1.788 E-3 1.788 E-6 32 1.94 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.94 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5
100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C:
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2\%
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2
z=\frac{273  K}{T  K}               \mu_0=1.788E-3  kg/(m\cdot s)

• Pipe roughness: From Table 6.1 for asphalted cast iron, ε = 0.0004 ft.

Table 6.1: ε
Material Condition ft mm Uncertainty, %
Steel Sheet metal, new 0.0002 0.05 ±60
Stainless, new 7E-06 0.002 ±50
Commercial, new 0.0002 0.046 ±30
Riveted 0.01 3 ±70
Rusted 0.007 2 ±50
Iron Cast, new 0.0009 0.26 ±50
Wrought, new 0.0002 0.046 ±20
Galvanized, new 0.0005 0.15 ±40
Asphalted cast 0.0004 0.12 ±50
Brass Drawn, new 7E-06 0.002 ±50
Plastic Drawn tubing 5E-06 0.0015 ±60
Glass Smooth Smooth
Concrete Smoothed 0.0001 0.04 ±60
Rough 0.007 2 ±50
Rubber Smoothed 3E-05 0.01 ±60
Wood Stave 0.0016 0.5 ±40

• Solution step 1: Find the pump head from the flow rate and the pump power:

Q = AV = \frac{\pi}{4}(0.5 ft)^2 \left(6\frac{ft}{s}\right) = 1.18 \frac{ft^3}{s} h_{pump} = \frac{Power}{\rho gQ} = \frac{(0.6  hp) [550(ft \cdot lbf )/(s \cdot hp)]}{(1.94  slug/ft^3) (32.2  ft/s^2) (1.18  ft^3/s)} = 4.48  ft

• Solution step 2: Compute the friction factor from the Colebrook formula, Eq. (6.48):

                              (6.48)

Re_d = \frac{\rho Vd}{\mu} = \frac{(1.94)(6)(0.5)}{2.09  E-5} = 278,500              \frac{\epsilon}{d} = \frac{0.0004  ft}{0.5  ft} = 0.0008

\frac{1}{\sqrt{f}} \approx 2.0 \log_{10} \left(\frac{\epsilon /d}{3.7} + \frac{2.51}{Re_d \sqrt{f}}\right)          yields f = 0.0198

• Solution step 3: Find the pipe length from the Darcy formula (6.10):

h_p = h_f = 4.48  ft = f \frac{L}{d} \frac{V^2}{2g} = (0.0198) \left(\frac{L}{0.5  ft}\right) \frac{(6  ft/s)^2}{2(32.2  ft/s^2)}

Solve for         L ≈ 203 ft

• Comment: This is Moody’s problem (Example 6.6) turned around so that the length is unknown.

Related Answered Questions