A pump delivers 0.6 hp to water at 68°F, flowing in a 6-in-diameter asphalted cast iron horizontal pipe at V = 6 ft/s. What is the proper pipe length to match these conditions?
A pump delivers 0.6 hp to water at 68°F, flowing in a 6-in-diameter asphalted cast iron horizontal pipe at V = 6 ft/s. What is the proper pipe length to match these conditions?
• Approach: Find h_f from the known power and find f from Re_d and ε/d. Then find L.
• Water properties: For water at 68°F, Table A.3, converting to BG units, ρ = 1.94 slug/ft^3 and µ = 2.09E-5 slug/(ft-s).
Table A.3 Properties of Common Liquids at 1 atm and 20°C (68°F) | ||||||
Liquid | \rho, kg/m^3 | µ, kg/(m·s) | Y, N/m^* | p_{\nu}, N/m^2 | Bulk modulus K, N/m^2 | Viscosity parameter C^{\dagger} |
Ammonia | 608 | 2.20 E-4 | 2.13 E-2 | 9.10 E+5 | 1.82 E+9 | 1.05 |
Benzene | 881 | 6.51 E-4 | 2.88 E-2 | 1.01 E+4 | 1.47 E+9 | 4.34 |
Carbon tetrachloride | 1590 | 9.67 E-4 | 2.70 E-2 | 1.20 E+4 | 1.32 E+9 | 4.45 |
Ethanol | 789 | 1.20 E-3 | 2.28 E-2 | 5.73 E+3 | 1.09 E+9 | 5.72 |
Ethylene glycol | 1117 | 2.14 E-2 | 4.84 E-2 | 1.23 E+1 | 3.05 E+9 | 11.7 |
Freon 12 | 1327 | 2.62 E-4 | – | – | 7.95 E+8 | 1.76 |
Gasoline | 680 | 2.92 E-4 | 2.16 E-2 | 5.51 E+4 | 1.3 E+9 | 3.68 |
Glycerin | 1260 | 1.49 | 6.33 E-2 | 1.43 E-2 | 4.35 E+9 | 28.0 |
Kerosene | 804 | 1.92 E-3 | 2.8 E-2 | 3.11 E+3 | 1.41 E+9 | 5.56 |
Mercury | 13,550 | 1.56 E-3 | 4.84 E-1 | 1.13 E-3 | 2.85 E+10 | 1.07 |
Methanol | 791 | 5.98 E-4 | 2.25 E-2 | 1.34 E+4 | 1.03 E+9 | 4.63 |
SAE 10W oil | 870 | 1.04 E-1^{\ddagger} | 3.6 E-2 | – | 1.31 E+9 | 15.7 |
SAE 10W30 oil | 876 | 1.7 E-1^{\ddagger} | – | – | – | 14.0 |
SAE 30W oil | 891 | 2.9 E-1^{\ddagger} | 3.5 E-2 | – | 1.38 E+9 | 18.3 |
SAE 50W oil | 902 | 8.6 E-^{\ddagger} | – | – | – | 20.2 |
Water | 998 | 1.00 E-3 | 7.28 E-2 | 2.34 E+3 | 2.19 E+9 | Table A.1 |
Seawater (30%) | 1025 | 1.07 E-3 | 7.28 E-2 | 2.34 E+3 | 2.33 E+9 | 7.28 |
^*In contact with air.
^{\dagger}The viscosity–temperature variation of these liquids may be fitted to the empirical expression
with accuracy of ±6 percent in the range 0 ≤ T ≤ 100°C.
^{\ddagger}Representative values. The SAE oil classifications allow a viscosity variation of up to ±50 percent, especially at lower temperatures.
Table A.1 | Viscosity and Density of Water at 1 atm | ||||||
T,°C | \rho, kg/m^3 | µ, N·s/m^2 | \nu, m^2/s | T,°F | \rho, slug/ft^3 | \mu, Ib\cdot s/ft^2 | \nu, ft^2/s |
0 | 1000 | 1.788 E-3 | 1.788 E-6 | 32 | 1.94 | 3.73 E-5 | 1.925 E-5 |
10 | 1000 | 1.307 E-3 | 1.307 E-6 | 50 | 1.94 | 2.73 E-5 | 1.407 E-5 |
20 | 998 | 1.003 E-3 | 1.005 E-6 | 68 | 1.937 | 2.09 E-5 | 1.082 E-5 |
30 | 996 | 0.799 E-3 | 0.802 E-6 | 86 | 1.932 | 1.67 E-5 | 0.864 E-5 |
40 | 992 | 0.657 E-3 | 0.662 E-6 | 104 | 1.925 | 1.37 E-5 | 0.713 E-5 |
50 | 988 | 0.548 E-3 | 0.555 E-6 | 122 | 1.917 | 1.14 E-5 | 0.597 E-5 |
60 | 983 | 0.467 E-3 | 0.475 E-6 | 140 | 1.908 | 0.975 E-5 | 0.511 E-5 |
70 | 978 | 0.405 E-3 | 0.414 E-6 | 158 | 1.897 | 0.846 E-5 | 0.446 E-5 |
80 | 972 | 0.355 E-3 | 0.365 E-6 | 176 | 1.886 | 0.741 E-5 | 0.393 E-5 |
90 | 965 | 0.316 E-3 | 0.327 E-6 | 194 | 1.873 | 0.660 E-5 | 0.352 E-5 |
100 | 958 | 0.283 E-3 | 0.295 E-6 | 212 | 1.859 | 0.591 E-5 | 0.318 E-5 |
Suggested curve fits for water in the range 0 ≤ T ≤ 100°C: | |||||||
\rho(kg/m^3)\approx 1000-0.0178 |T^{\circ}C-4^{\circ}C|^{1.7} \pm 0.2\% | |||||||
\ln \frac{\mu}{\mu_0}\approx 1.704-5.306_z+{7.003_z}^2 | |||||||
z=\frac{273 K}{T K} \mu_0=1.788E-3 kg/(m\cdot s) |
• Pipe roughness: From Table 6.1 for asphalted cast iron, ε = 0.0004 ft.
Table 6.1: ε | ||||
Material | Condition | ft | mm | Uncertainty, % |
Steel | Sheet metal, new | 0.0002 | 0.05 | ±60 |
Stainless, new | 7E-06 | 0.002 | ±50 | |
Commercial, new | 0.0002 | 0.046 | ±30 | |
Riveted | 0.01 | 3 | ±70 | |
Rusted | 0.007 | 2 | ±50 | |
Iron | Cast, new | 0.0009 | 0.26 | ±50 |
Wrought, new | 0.0002 | 0.046 | ±20 | |
Galvanized, new | 0.0005 | 0.15 | ±40 | |
Asphalted cast | 0.0004 | 0.12 | ±50 | |
Brass | Drawn, new | 7E-06 | 0.002 | ±50 |
Plastic | Drawn tubing | 5E-06 | 0.0015 | ±60 |
Glass | – | Smooth | Smooth | |
Concrete | Smoothed | 0.0001 | 0.04 | ±60 |
Rough | 0.007 | 2 | ±50 | |
Rubber | Smoothed | 3E-05 | 0.01 | ±60 |
Wood | Stave | 0.0016 | 0.5 | ±40 |
• Solution step 1: Find the pump head from the flow rate and the pump power:
Q = AV = \frac{\pi}{4}(0.5 ft)^2 \left(6\frac{ft}{s}\right) = 1.18 \frac{ft^3}{s} h_{pump} = \frac{Power}{\rho gQ} = \frac{(0.6 hp) [550(ft \cdot lbf )/(s \cdot hp)]}{(1.94 slug/ft^3) (32.2 ft/s^2) (1.18 ft^3/s)} = 4.48 ft• Solution step 2: Compute the friction factor from the Colebrook formula, Eq. (6.48):
\frac{1}{f^{1/2}}=-2.0 \log \left(\frac{\epsilon /d}{3.7}+\frac{2.51}{Re_d f^{1/2}}\right) (6.48)
Re_d = \frac{\rho Vd}{\mu} = \frac{(1.94)(6)(0.5)}{2.09 E-5} = 278,500 \frac{\epsilon}{d} = \frac{0.0004 ft}{0.5 ft} = 0.0008\frac{1}{\sqrt{f}} \approx 2.0 \log_{10} \left(\frac{\epsilon /d}{3.7} + \frac{2.51}{Re_d \sqrt{f}}\right) yields f = 0.0198
• Solution step 3: Find the pipe length from the Darcy formula (6.10):
h_p = h_f = 4.48 ft = f \frac{L}{d} \frac{V^2}{2g} = (0.0198) \left(\frac{L}{0.5 ft}\right) \frac{(6 ft/s)^2}{2(32.2 ft/s^2)}Solve for L ≈ 203 ft
• Comment: This is Moody’s problem (Example 6.6) turned around so that the length is unknown.