Question 11.31: (a) Repeat Prob. 11.19, but this time let the external force...

(a) Repeat Prob. 11.19, but this time let the external force be a Dirac delta function: F(t) = kδ(t) (for some constant k) .^{25} [Note that the acceleration is now discontinuous at t = 0 (though the velocity must still be continuous); use the method of Prob. 11.19 (a) to show that Δa = −k/mτ. In this problem there are only two intervals to consider: (i) t < 0, and (ii) t > 0.]

(b) As in Prob. 11.30, check that energy is conserved in this process.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } a=\tau \dot{a}+\frac{k}{m} \delta(t) \Rightarrow \int_{-\epsilon}^{\epsilon} a(t) d t=v(\epsilon)-v(-\epsilon)=\tau \int_{-\epsilon}^{\epsilon} \frac{d a}{d t} d t+\frac{k}{m} \int_{-\epsilon}^{\epsilon} \delta(t) d t=\tau[a(\epsilon)-a(-\epsilon)]+\frac{k}{m}.

If the velocity is continuous, so v(\epsilon)=v(-\epsilon), \text { then } a(\epsilon)-a(-\epsilon)=-\frac{k}{m \tau}.

\text { When } t<0, a=\tau \dot{a} \Rightarrow a(t)=A e^{t / \tau} ; \text { when } t>0, a=\tau \dot{a} \Rightarrow a(t)=B e^{t / \tau} ; \quad \Delta a=B-A=-\frac{k}{m \tau}

\Rightarrow B=A-\frac{k}{m \tau} , so the general solution is a(t)= \begin{cases}A e^{t / \tau}, & (t<0) \\ {[A-(k / m \tau)] e^{t / \tau},} & (t>0)\end{cases}

To eliminate the runaway we’d need A=k / m \tau ; to eliminate preacceleration we’d need A = 0. Obviously,

you can’t do both. If you choose to eliminate the runaway, then a(t)= \begin{cases}(k / m \tau) e^{t / \tau}, & (t<0) \\0,&(t>0)\end{cases}

v(t)=\int_{-\infty}^{t} a(t) d t=\frac{k}{m \tau} \int_{-\infty}^{t} e^{t / \tau} d t=\left.\frac{k}{m \tau}\left(\tau e^{t / \tau}\right)\right|_{-\infty} ^{t}=\frac{k}{m} e^{t / \tau}(\text { for } t<0);

\text { for } t>0, v(t)=v(0)+\int_{0}^{t} a(t) dt=v(0)=\frac{k}{m} . \text { So } v(t)= \begin{cases}(k / m) e^{t / \tau}, & (t<0) \\ (k / m), & (t>0)\end{cases}

For an uncharged particle we would have a(t)=\frac{k}{m} \delta(t), v(t)=\int_{-\infty}^{t} a(t) d t= \begin{cases}0, & (t<0) \\ (k / m), & (t>0)\end{cases}

The graphs:

(b)   W_{\text {ext }}=\int F d x=\int F v d t=k \int \delta(t) v(t) d t=k v(0)=\frac{k^{2}}{m}.

W_{ kin }=\frac{1}{2} m v_{f}^{2}=\frac{1}{2} m\left(\frac{k}{m}\right)^{2}=\frac{k^{2}}{2 m}.

W_{ ext }=\int P_{ rad } d t=\frac{\mu_{0} q^{2}}{6 \pi c} \int[a(t)]^{2} d t=\tau m\left(\frac{k}{m \tau}\right)^{2} \int_{-\infty}^{0} e^{2 t / \tau} d t=\left.\frac{k^{2}}{m \tau}\left(\frac{\tau}{2} e^{2 t / \tau}\right)\right|_{-\infty} ^{0}=\frac{k^{2}}{m \tau} \frac{\tau}{2}=\frac{k^{2}}{2 m}.

\text { Clearly, } W_{\text {ext }}=W_{\text {kin }}+W_{\text {rad }}.

11.31

Related Answered Questions