Question 13.192: A satellite describes an elliptic orbit about a planet of ma...

A satellite describes an elliptic orbit about a planet of mass M. The minimum and maximum values of the distance r from the satellite to the center of the planet are, respectively, { r }_{ 0 } and { r }_{ 1 }. Use the principles of conservation of energy and conservation of angular momentum to derive the relation

\frac { 1 }{ { r }_{ 0 } } +\frac { 1 }{ { r }_{ 1 } } =\frac { 2GM }{ { h }^{ 2 } }

where h is the angular momentum per unit mass of the satellite and G is the constant of gravitation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Angular momentum:

\begin{aligned}h & =r_{0}, \quad \nu_{0}=r_{1} \nu_{1} \\b & =r_{0} \nu_{0}=r_{1} \nu_{1} \\\nu_{0} & =\frac{h}{r_{0}} \quad \nu_{1}=\frac{h}{r_{1}}\quad\quad\text{(1)}\end{aligned}

Conservation of energy:

\begin{aligned}T_{A} & =\frac{1}{2} m \nu_{0}^{2} \\V_{A} & =-\frac{G M m}{r_{0}} \\T_{B} & =\frac{1}{2} m \nu_{1}^{2} \\V_{B} & =-\frac{G M m}{r_{1}} \\T_{A}+V_{A} & =T_{B}+V_{B} \\\frac{1}{2} m \nu_{0}^{2}-\frac{G M m}{r_{0}} & =\frac{1}{2} m \nu_{1}^{2}-\frac{G M m}{r_{1}} \\\nu_{0}^{2}-\nu_{1}^{2} & =2 G M\left[\frac{1}{r_{0}}-\frac{1}{r_{1}}\right]=2 G M\left[\frac{r_{1}-r_{0}}{r_{1} r_{0}}\right]\end{aligned}

Substituting for \nu_{0} and \nu_{1} from Eq. (1)

\begin{aligned}h^{2}\left[\frac{1}{r_{0}^{2}}-\frac{1}{r_{1}^{2}}\right] & =2 G M\left[\frac{r_{1}-r_{0}}{r_{1} r_{0}}\right] \\h^{2}\left[\frac{r_{1}^{2}-r_{0}^{2}}{r_{1}^{2} r_{0}^{2}}\right] & =\frac{h^{2}}{r_{1}^{2} r_{0}^{2}}\left(r_{1}-r_{0}\right)\left(r_{1}+r_{0}\right)=2 G M\left[\frac{r_{1}-r_{0}}{r_{1} r_{0}}\right] \\h^{2}\left\lgroup\frac{1}{r_{0}}+\frac{1}{r_{1}}\right\rgroup & =2 G M \quad\quad\quad\quad\left\lgroup\frac{1}{r_{0}}+\frac{1}{r_{1}}\right\rgroup=\frac{2 G M}{h^{2}} \quad \text { Q.E.D. }\end{aligned}

13.192.

Related Answered Questions