Question 19.3: A section of a retaining wall with a reinforced backfill is ...

A section of a retaining wall with a reinforced backfill is shown in Fig. Ex. 19.3. The backfill surface is subjected to a surcharge of 30 kN / m ^{2}. Required:

(a) The reinforcement distribution.

(b) The maximum tension in the strip.

(c) Check for external stability.

Given: b = 100 mm, t = 5 mm, f_{a}=143.7 MPa , c=0, \phi=36^{\circ}, \delta=25^{\circ}, \gamma=17.5 kN / m ^{3}, s = 0.5 m, and h = 0.5 m.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

FromEq. (19.17a)

 

T=p_{h} \times h \times s / \text { strip }=\left(\gamma K_{A}+q_{h}\right) h \times s (19.17a)

 

T=\left(\gamma z K_{A}+q_{h}\right) h \times s=\left(p_{o}+q_{h}\right) A_{c}

 

where \gamma=17.5 kN / m ^{3}, K_{A}=0.26, A_{c}=h \times s=(0.5 \times 0.5) m ^{2}

 

FromEq. (19.13a)

 

q_{h}=\frac{2 q_{s}}{\pi}(\beta-\sin \beta \cos 2 \alpha) (19.13a)

 

q_{h}=\frac{2 q_{s}}{\pi}[\beta-\sin \beta \cos 2 \alpha]

 

Refer to Fig. Ex. 19.3 for the definition of \alpha \text { and } \beta.

 

q_{s}=30 kN / m ^{2}

 

The procedure for calculating length L of the strip for one depth z = 1.75 m (strip number 4) is explained below. The same method is valid for the other strips.

 

Strip No. 4. Depth z = 1.75 m

 

p_{a}=\gamma z K_{A}=17.5 \times 1.75 \times 0.26=7.96 kN / m ^{2}

 

From Fig. Ex. 19.3, \begin{aligned}&\beta=19.07^{\circ}=0.3327 \text { radians } \\&\alpha=29.74^{\circ} \\&q_{s}=30 kN / m ^{2}\end{aligned}

 

q_{h}=\frac{2 \times 30}{3.14}\left[0.3327-\sin 19.07^{\circ} \cos 59.5^{\circ}\right]=3.19 kN / m ^{2}

 

Figure Ex. 19.3 shows the surcharge distribution at a 2 (vertical) to 1 (horizontal) slope. Per the figure at depth z = 1.75 m, L_{1}=1.475 m from the failure line and L_{R}=(H-z) \tan \left(45^{\circ}-\phi / 2\right) =2.75 \tan \left(45^{\circ}-36^{\circ} / 2\right)=1.4 1.4m from the wall to the failure line. It is now necessary to determine L_{2} (Refer to Fig. 19.15a).

 

Now T=(7.96+3.19) \times 0.5 \times 0.5=2.79 kN / strip.

 

The equation for the frictional resistance per strip is

 

F_{R}=2 b(\gamma z+\Delta q) L_{1} \tan \delta+\left(\gamma z L_{2} \tan \delta\right) 2 b

 

From the 2:1 distribution \Delta q \text { at } z=1.75 m is

 

\Delta q=\frac{Q}{B+z}=\frac{30 \times 1}{1+1.75}=10.9 kN / m ^{2}

 

p_{o}=17.5 \times 1.75=30.63 kN / m ^{2}

 

Hence \overline{p_{o}}=10.9+30.63=41.53 kN / m ^{2}

 

Now equating frictional resistance F_{R} to tension in the strip with F_{s}=1.5, we have F_{R}=1.5 Given b = 100 mm. Now from Eq. (19.20)

 

F_{R}=2 b\left[\bar{p}_{o} L_{1}+p_{o} L_{2}\right] \tan \delta \leq T F_{s} (19.20)

 

F_{R}=2 b \tan \delta\left(\bar{p}_{o} L_{1}+p_{o} L_{2}\right)=1.5 T

 

Substituting and taking \delta=25^{\circ}, we have

 

2 \times 0.1 \times 0.47\left[41.53 \times 1.475+30.63 L_{2}\right]=1.5 \times 2.79

 

Simplifying

 

Hence \begin{aligned}&L_{2}=-0.546 m \approx 0 \\&L_{e}=L_{1}+0=1.475 m \\&L=L_{R}+L_{e}=1.4+1.475=2.875 m\end{aligned}

 

L can be calculated in the same way at other depths.

Maximum tension T

The maximum tension is in strip number 9 at depth z = 4.25m

 

Allowable T_{a}=f_{a} b t=143.7 \times 10^{3} \times 0.1 \times 0.005=71.85 kN

 

T=\left(\gamma z K_{A}+q_{h}\right) s h

 

where \gamma z K_{A}=17.50 \times 4.25 \times 0.26=19.34 kN / m ^{2}

 

q_{h}=0.89 kN / m ^{2} \text { from equation for } q_{h} \text { at depth } z=4.25 m.

 

Hence T=(19.34+0.89) \times 1 / 2 \times 1 / 2=5.05 kN / strip <71.85 kN – OK

19.3.

Related Answered Questions