Question 10.25: A semi-elliptic multi-leaf spring is used for the suspension...

A semi-elliptic multi-leaf spring is used for the suspension of the rear axle of a truck. It consists of two extra full-length leaves and ten graduated-length leaves including the master leaf. The centre-to-centre distance between the spring eyes is 1.2 m. The leaves are made of steel 55Si2Mo90(Svt=1500N/mm2 and E=207000N/mm2) 55 \operatorname{Si2Mo90}\left(S_{v t}=1500 N / mm ^{2} \text { and } E=207000\right. \left.N / mm ^{2}\right) and the factor of safety is 2.5. The spring is to be designed for a maximum force of 30 kN. The leaves are pre-stressed so as to equalize stresses in all leaves. Determine
(i) the cross-section of leaves; and
(ii) the deflection at the end of the spring.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 Given 2P=30kN2L=1.2mnf=2ng=10 \text { Given } 2 P=30 kN \quad 2 L=1.2 m \quad n_{f}=2 \quad n_{g}=10 .

E=207000N/mm2Syt=1500N/mm2(fs)=2.5 E =207000 N / mm ^{2} \quad S_{y t}=1500 N / mm ^{2} \quad(f s)=2.5 .

Step I Cross-section of the leaves
2 P = 30 kN or           P = 15 000 N
2 L = 1.2 m or             L = 600 mm.

σb=Syt(fs)=15002.5=600N/mm2 \sigma_{b}=\frac{S_{y t}}{(f s)}=\frac{1500}{2.5}=600 N / mm ^{2} .

From Eq. (10.41),

σb=6PLnbt2 \sigma_{b}=\frac{6 P L}{n b t^{2}}             (10.41).

σb=6PLnbt2 or (600)=6(15000)(600)(2+10)bt2 \sigma_{b}=\frac{6 P L}{n b t^{2}} \quad \text { or } \quad(600)=\frac{6(15000)(600)}{(2+10) b t^{2}} .

bt2=7500mm3 b t^{2}=7500 mm ^{3} .

Assuming a standard width of 60 mm,

t2=750060 or t=11.18 or 12mm t^{2}=\frac{7500}{60} \text { or } t=11.18 \text { or } 12 mm .

Cross-section of the leaves = 60 × 12 mm                (i)
Step II Deflection at the end of the spring

From Eq. (10.38),
δ=12PL3Ebt3(3nf+2ng) \delta=\frac{12 P L^{3}}{E b t^{3}\left(3 n_{f}+2 n_{g}\right)}               (10.38).

δ=12PL3Ebt3(3nf+2ng) \delta=\frac{12 P L^{3}}{E b t^{3}\left(3 n_{f}+2 n_{g}\right)} .

=12(15000)(600)3(207000)(60)(12)3(3×2+2×10) =\frac{12(15000)(600)^{3}}{(207000)(60)(12)^{3}(3 \times 2+2 \times 10)} .

= 69.68 mm             (ii).

Related Answered Questions