Question 12.60: A semicircular slot of 10-in. radius is cut in a flat plate ...

A semicircular slot of 10-in. radius is cut in a flat plate which rotates about the vertical AD at a constant rate of 14 rad/s. A small, 0.8-lb block E is designed to slide in the slot as the plate rotates. Knowing that the coefficients of friction are { \mu }_{ s }=0.35 and { \mu}_{ k }=0.25, determine whether the block will slide in the slot if it is released in the position corresponding to (a) \theta =80°, (b)\theta =40°. Also determine the magnitude and the direction of the friction force exerted on the block immediately after it is released.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First note

\begin{aligned}\rho & =\frac{1}{12}(26-10 \sin \theta) \mathrm{\ ft} \\\nu_{E} & =\rho \dot{\phi}_{A B C D}\end{aligned}

Then

\begin{aligned}a_{n} & =\frac{\nu_{E}^{2}}{\rho}=\rho\left(\dot{\phi}_{A B C D}\right)^{2} \\& =\left[\frac{1}{12}(26-10 \sin \theta) \mathrm{ft}\right](14 \mathrm{\ rad} / \mathrm{s})^{2} \\& =\frac{98}{3}(13-5 \sin \theta) \mathrm{ft} / \mathrm{s}^{2}\end{aligned}

Assume that the block is at rest with respect to the plate.

\begin{aligned}& \quad\quad +\swarrow \Sigma F_{x}=m a_{x}: \quad N+W \cos \theta =m \frac{\nu_{E}^{2}}{\rho} \sin \theta \\\text{or}& \quad\quad\quad\quad\quad\quad N =W\left\lgroup-\cos \theta+\frac{\nu_{E}^{2}}{g \rho} \sin \theta\right\rgroup \\& \quad\quad +\searrow \Sigma F_{y}=m a_{y}:-F+W \sin \theta =-m \frac{\nu_{E}^{2}}{\rho} \cos \theta \\\text{or} & \quad\quad\quad\quad\quad\quad F =W\left\lgroup\sin \theta+\frac{\nu_{E}^{2}}{g \rho} \cos \theta\right\rgroup\end{aligned}

(a) We have \quad\theta=80^{\circ}

Then 

\begin{aligned}N & =(0.8 \mathrm{\ lb})\left[-\cos 80^{\circ}+\frac{1}{32.2 \mathrm{~ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \sin 80^{\circ}\right] \\& =6.3159 \mathrm{\ lb} \\F & =(0.8 \mathrm{\ lb})\left[\sin 80^{\circ}+\frac{1}{32.2 \mathrm{~ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \cos 80^{\circ}\right] \\& =1.92601 \mathrm{\ lb}\end{aligned}

Now \quad F_{\max }=\mu_{s} N=0.35(6.3159 \mathrm{\ lb})=2.2106 \mathrm{\ lb}

The block does not slide in the slot, and

\mathbf{F}=1.926 \mathrm{\ lb} \ ⦩ 80^{\circ}\blacktriangleleft

(b) We have \quad\theta=40^{\circ}

Then

\begin{aligned}N & =(0.8 \mathrm{\ lb})\left[-\cos 40^{\circ}+\frac{1}{32.2 \mathrm{\ ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \sin 40^{\circ}\right] \\& =4.4924 \mathrm{\ lb} \\F & =(0.8 \mathrm{\ lb})\left[\sin 40^{\circ}+\frac{1}{32.2 \mathrm{\ ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \cos 40^{\circ}\right] \\& =6.5984 \mathrm{\ lb}\end{aligned}

Now 

\begin{gathered}F_{\max }=\mu_{s} N, \text { from which it follows that } \\F>F_{\max }\end{gathered}

Block E will slide in the slot

and

\begin{aligned}\mathbf{a}_{E} & =\mathbf{a}_{n}+\mathbf{a}_{E / \text { plate }} \\& =\mathbf{a}_{n}+\left(\mathbf{a}_{E / \text { plate }}\right)_{t}+\left(\mathbf{a}_{E / \text { plate }}\right)_{n}\end{aligned}

At t=0, the block is at rest relative to the plate, thus \left(\mathbf{a}_{E / p \text { plate }}\right)_{n}=0 at t = 0, so that \mathbf{a}_{E / \text { plate }} must be directed tangentially to the slot.

\begin{aligned}& +\swarrow \Sigma F_{x}=m a_{x}: \quad N+W \cos 40^{\circ} =m \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ} \\\text{or } & \quad\quad\quad\quad N =W\left\lgroup-\cos 40^{\circ}+\frac{\nu_{E}^{2}}{g \rho} \sin 40^{\circ}\right\rgroup \text { (as above) } \\& \quad\quad\quad\quad\quad =4.4924 \mathrm{\ lb}\end{aligned}

Sliding:

\begin{aligned}F & =\mu_{k} N \\& =0.25(4.4924 \mathrm{\ lb}) \\& =1.123 \mathrm{\ lb}\end{aligned}

Noting that \mathbf{F} and \mathbf{a}_{E / \text { plane }} must be directed as shown (if their directions are reversed, then \Sigma \mathbf{F}_{x} is \searrowwhile m \mathbf{a}_{x} is \nwarrow), we have

the block slides downward in the slot and

\mathbf{F}=1.123\mathrm{\ lb}\ ⦩40^{\circ}\blacktriangleleft

Alternative solutions.

(a) Assume that the block is at rest with respect to the plate.

\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}

Then 

\begin{aligned}\tan \left(\phi-10^{\circ}\right) & =\frac{W}{m a_{n}}=\frac{W}{\frac{W}{g} \frac{\nu_{E}^{2}}{\rho}}=\frac{g}{\rho\left(\dot{\phi}_{A B C D}\right)^{2}} \\& =\frac{32.2 \mathrm{\ ft} / \mathrm{s}^{2}}{\frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2}} & \text{(from above)}\end{aligned}

or \quad\phi-10^{\circ}=6.9588^{\circ}

and \quad\phi=16.9588^{\circ}

Now \quad\tan \phi_{s}=\mu_{s} \quad \mu_{s}=0.35

so that \quad\phi_{s}=19.29^{\circ}

0<\phi<\phi_{s} \RightarrowBlock does not slide and \mathbf{R} is directed as shown.

Now \quad F=R \sin \phi \quad \text { and } \quad R=\frac{W}{\sin \left(\phi-10^{\circ}\right)}

Then 

\begin{aligned}F & =(0.8 \mathrm{\ lb}) \frac{\sin 16.9588^{\circ}}{\sin 6.9588^{\circ}} \\& =1.926 \mathrm{\ lb}\end{aligned}

The block does not slide in the slot and

\mathbf{F}=1.926\mathrm{\ lb}\ ⦩80^{\circ}\blacktriangleleft

(b) Assume that the block is at rest with respect to the plate.

\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}

From Part a (above), it then follows that

\tan \left(\phi-50^{\circ}\right)=\frac{g}{\rho\left(\dot{\phi}_{A B C D}\right)^{2}}=\frac{32.2 \mathrm{\ ft} / \mathrm{s}^{2}}{\frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2}}

or \quad\phi-50^{\circ}=5.752^{\circ}

and \quad\phi=55.752^{\circ}

Now \quad\phi_{s}=19.29^{\circ}

so that \quad \phi>\phi_{s}

The block will slide in the slot and then 

\begin{aligned}& \quad\quad\phi =\phi_{k}, \quad \text { where } \quad \tan \phi_{k}=\mu_{k} \quad \mu_{k}=0.25 \\\text{or} & \quad\quad \phi_{k} =14.0362^{\circ}\end{aligned}

To determine in which direction the block will slide, consider the free-body diagrams for the two possible cases.

Now \quad\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}+m \mathbf{a}_{E / \text { plate }}

From the diagrams it can be concluded that this equation can be satisfied only if the block is sliding downward. Then

+\swarrow \Sigma F_{x}=m a_{x}: \quad W \cos 40^{\circ}+R \cos \phi_{k}=m \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ}

Now \quad F=R \sin \phi_{k}

Then \quad W \cos 40^{\circ}+\frac{F}{\tan \phi_{k}}=\frac{W}{g} \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ}

or 

\begin{aligned}F & =\mu_{k} W\left\lgroup-\cos 40^{\circ}+\frac{\nu_{E}^{2}}{g \rho} \sin 40^{\circ}\right\rgroup \\& =1.123 \mathrm{\ lb} \quad \text { (see the first solution) }\end{aligned}

The block slides downward in the slot and 

\mathbf{F}=1.123\mathrm{\ lb}\ ⦩40^{\circ}\blacktriangleleft

12.60.
12.60..
12.60...
12.60....
12.60.....

Related Answered Questions