\text { Given: } m_{ A }=50 kg , m_{ B }=55 kg , m_{ C }=20 kg , r_{ A }=20 mm , r_{ B }=r_{ C }=15 mm , N=300 rpm .
The position of shaft and pulleys is shown in Fig.12.59(a).
\text { Let } M_{L}, M_{M}=\text { mass at the bearings } L \text { and } M .
r_{L}, r_{M}=\text { radium of rotation of masses } m_{L} \text { and } m_{M} \text {, respectively. }
Table 12.41 |
Mrl (kg m²)
(6) |
l (m)
(5) |
Mr (kg m)
(4) |
Radius r (m)
(3) |
Mass m (kg)
(2) |
Plane
(1) |
– 0.5 |
– 0.5 |
10 |
0.020 |
50 |
A |
0 |
0 |
M_{L} r_{L} |
r_{L} |
M_{L} |
L(RP) |
0.825 |
1.0 |
0.825 |
0.015 |
55 |
B |
2M_{M} r_{M} |
2.0 |
M_{M} r_{M} |
r_{M} |
M_{M} |
M |
0.75 |
2.5 |
0.30 |
0.015 |
20 |
C |
\omega=\frac{2 \pi N}{60}=\frac{2 \pi \times 300}{60}=31.42 rad / s .
Draw the force polygon as shown in Fig.12.59(c) from the data in column (4). ob = 0.825 kg m is a vertical line. bc = 1.0 and oc = 0.30.
In Fig.12.59(b), draw OA parallel to BC and OC parallel to OC.
\angle A O B=165^{\circ}, \angle B O C=61^{\circ}, \angle A O C=134^{\circ} .
Draw couple polygon as shown in Fig.12.59(d).
o^{\prime} b^{\prime}=0.825 kg \cdot m ^{2} \text { is vertical, } b^{\prime} a \text { ' parallel to } OA \text { and } a^{\prime} c \text { ' parallel to } O C .
c^{\prime} o^{\prime}=2 M_{M} r_{M}=9.2 cm =1.84 kg . m ^{2} .
M_{M} r_{M}=0.92 kg m .
\text { Dynamic force on bearing } M=M_{M} r_{M} w^{2}=0.92 \times(31.42)^{2}=908.24 N .
Now draw force polygon as shown in Fig.12.59(e).
O b=0.825 kg . m \text { is a vertical line. } b m \| o^{\prime} c^{\prime} \text { and } bm = M _{M} r _{M}=0.92 kg \cdot m , mc \| \text { oc, } mc =0.3 kg m .
c d \| O A \text { and } c d=1.0 kg \cdot m .
O d=M_{L} r_{L}=4.6 cm =0.92 kg m .
\text { Dynamic force on bearing } L=M_{L} r_{L} w^{2}=0.92 \times(31.42)=908.24 N .