A short column of rectangular cross-section, width b and depth d, is fabricated from material having a Young’s modulus E and a tangent modulus E_{ t }. Determine, in terms of E and E_{ t }, an expression for the reduced modulus E_{ r }.
A short column of rectangular cross-section, width b and depth d, is fabricated from material having a Young’s modulus E and a tangent modulus E_{ t }. Determine, in terms of E and E_{ t }, an expression for the reduced modulus E_{ r }.
For a rectangular section of width b Eq. (8.19) becomes
E \int_{0}^{d_{1}} y_{1} d A-E_{ t } \int_{0}^{d_{2}} y_{2} d A=0 (8.19)
E \int_{0}^{d_{1}} b y_{1} d y-E_{ t } \int_{0}^{d_{2}} b y_{2} d y=0
Integrating and substituting the limits gives
E d_{1}^{2}-E_{ t } d_{2}^{2}=0 (i)
Substituting in Eq. (i) for d_{2}\left(=d-d_{1}\right) we obtain
d_{1}^{2}\left(E-E_{ t }\right)+2 E_{ t } d d_{1}-E_{ t } d^{2}=0
Solving this quadratic in d_{1} using the formula and simplifying gives
d_{1}=\frac{d}{1+\sqrt{\left(E / E_{ t }\right)}} (ii)
It follows that
d_{2}=\frac{d}{1+\sqrt{\left(E_{ t } / E\right)}} (iii)
Now, in Eq. (8.16)
E_{ r }=E \frac{I_{1}}{I}+E_{ t } \frac{I_{2}}{I} (8.16)
I=\frac{b d^{3}}{12}, I_{1}=\frac{b d_{1}^{3}}{3}, I_{2}=\frac{b d_{2}^{3}}{3}
Substituting for d_{1} and d_{2} in these expressions from Eqs. (ii) and (iii) respectively and then in Eq. (8.16) gives
E_{r}=\frac{4 E E_{ t }}{\left(\sqrt{E_{ t }}+\sqrt{E}\right)^{2}} (iv)
Note that in the case of elastic failure occurring across the complete cross-section of the column then, in Eq. (iv), E=E_{ t } and E_{ r }=E_{ t }. If no elastic failure occurs then E_{ t }=E and E_{ r }=E.