Question 9.32: (a) Show directly that Eqs. 9.197 satisfy Maxwell’s equation...

(a) Show directly that Eqs. 9.197 satisfy Maxwell’s equations (Eq. 9.177) and the boundary conditions (Eq. 9.175).

\left.\begin{array}{l} E (s, \phi, z, t)=\frac{A \cos (k z-\omega t)}{s} \hat{ s } \\B (s, \phi, z, t)=\frac{A \cos (k z-\omega t)}{c s} \hat{\phi}\end{array}\right\}                                    (9.197) 

\left. \begin{matrix} \text { (i) } \nabla \cdot E =0 \text {, } & \text { (iii) } \nabla \times E =-\frac{\partial B }{\partial t}, \\ \text { (ii) } \nabla \cdot B =0 \text {, } & \text { (iv) } \nabla \times B =\frac{1}{c^{2}} \frac{\partial E }{\partial t} \text {. } \end{matrix} \right\}                            (9.177) 

\left.\begin{array}{l}\text { (i) } \quad E ^{\|}= 0 \\\text { (ii) } B^{\perp}=0\end{array}\right\}                                  (9.175)
(b) Find the charge density,
λ(z, t), and the current, I (z, t), on the inner conductor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { (a) } \nabla \cdot E =\frac{1}{s} \frac{\partial}{\partial s}\left(s E_{s}\right)=0 ; \nabla \cdot B =\frac{1}{s} \frac{\partial}{\partial \phi}\left(B_{\phi}\right)=0 ; \nabla \times E =\frac{\partial E_{s}}{\partial z} \hat{ \phi }-\frac{1}{s} \frac{\partial E_{s}}{\partial \phi} \hat{ z }=-\frac{E_{0} k \sin (k z-\omega t)}{s} \hat{\phi} \stackrel{?}{=} -\frac{\partial B }{\partial t}=-\frac{E_{0} \omega}{c} \frac{\sin (k z-\omega t)}{s} \hat{ \phi }  (\text { since } k=\omega / c) ; \nabla \times B =-\frac{\partial B_{\phi}}{\partial z} \hat{ s }+\frac{1}{s} \frac{\partial}{\partial s}\left(s B_{\phi}\right) \hat{ z }=\frac{E_{0} k}{c} \frac{\sin (k z-\omega t)}{s} \hat{ s } \stackrel{?}{=}

\frac{1}{c^{2}} \frac{\partial E }{\partial t}=\frac{E_{0} \omega}{c^{2}} \frac{\sin (k z-\omega t)}{s} \hat{ s } . \text { Boundary conditions: } E^{\|}=E_{z}=0  ; B^{\perp}=B_{s}=0.

(b) To determine λ, use Gauss’s law for a cylinder of radius s and length dz:

\oint E \cdot d a =E_{0} \frac{\cos (k z-\omega t)}{s}(2 \pi s) d z=\frac{1}{\epsilon_{0}} Q_{ enc }=\frac{1}{\epsilon_{0}} \lambda d z \Rightarrow \lambda=2 \pi \epsilon_{0} E_{0} \cos (k z-\omega t)

To determine I, use \text { Ampére's } law for a circle of radius s (note that the displacement current through this loop is zero, since E is in the \hat{ S } direction): \oint B \cdot d l =\frac{E_{0}}{c} \frac{\cos (k z-\omega t)}{s}(2 \pi s)=\mu_{0} I_{ enc } \Rightarrow I=\frac{2 \pi E_{0}}{\mu_{0} c} \cos (k z-\omega t) .

The charge and current on the outer conductor are precisely the opposite of these, since E = B = 0 inside the metal, and hence the total enclosed charge and current must be zero.

Related Answered Questions