(a) Show directly that Eqs. 9.197 satisfy Maxwell’s equations (Eq. 9.177) and the boundary conditions (Eq. 9.175).
\left.\begin{array}{l} E (s, \phi, z, t)=\frac{A \cos (k z-\omega t)}{s} \hat{ s } \\B (s, \phi, z, t)=\frac{A \cos (k z-\omega t)}{c s} \hat{\phi}\end{array}\right\} (9.197)
\left. \begin{matrix} \text { (i) } \nabla \cdot E =0 \text {, } & \text { (iii) } \nabla \times E =-\frac{\partial B }{\partial t}, \\ \text { (ii) } \nabla \cdot B =0 \text {, } & \text { (iv) } \nabla \times B =\frac{1}{c^{2}} \frac{\partial E }{\partial t} \text {. } \end{matrix} \right\} (9.177)
\left.\begin{array}{l}\text { (i) } \quad E ^{\|}= 0 \\\text { (ii) } B^{\perp}=0\end{array}\right\} (9.175)
(b) Find the charge density, λ(z, t), and the current, I (z, t), on the inner conductor.