Question 3.4: (a) Show that the average electric field over a spherical su...

(a) Show that the average electric field over a spherical surface, due to charges outside the sphere, is the same as the field at the center.
(b) What is the average due to charges inside the sphere?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer to Fig. 3.3, letting α be the angle between and the z axis. Obviously, E _{\text {ave }} points in the -\hat{ z } direction, so

E _{ ave }=\frac{1}{4 \pi R^{2}} \oint E d a=-\hat{ z } \frac{1}{4 \pi R^{2}} \frac{q}{4 \pi \epsilon_{0}} \int \frac{1}{ᴫ^{2}} \cos \alpha d a .

By the law of cosines  ,

R^{2}=z^{2}+ᴫ^{2}-2 ᴫ z \cos \alpha \Rightarrow \cos \alpha=\frac{z^{2}+ᴫ^{2}-R^{2}}{2 ᴫ z} ,

ᴫ^{2}=R^{2}+z^{2}-2 R z \cos \theta \quad \Rightarrow \quad \frac{\cos \alpha}{ᴫ^{2}}=\frac{z^{2}+ᴫ^{2}-R^{2}}{2 zᴫ^{3} }=\frac{z-R \cos \theta}{\left(R^{2}+z^{2} -2 R z \cos \theta \right)^{3 / 2}} .

E _{ ave }=-\hat{ z } \frac{q}{16 \pi^{2} R^{2} \epsilon_{0}} \int \frac{z-R \cos \theta}{\left(R^{2}+z^{2}-2 R z \cos \theta \right)^{3 / 2}} R^{2} \sin \theta d \theta d \phi

 

=-\frac{q \hat{ z }}{8 \pi \epsilon_{0}} \int_{0}^{\pi} \frac{z-R \cos \theta}{\left(R^{2}+z^{2}-2 R z \cos \theta\right)^{3 / 2}} \sin \theta d \theta=-\frac{q \hat{ z }}{8 \pi \epsilon_{0}} \int_{-1}^{1} \frac{z-R u}{\left(R^{2}+z^{2}-2 R z u\right)^{3 / 2}} d u

\text { (where } u \equiv \cos \theta) \text {. } The integral is

I=\left.\frac{1}{R \sqrt{R^{2}+z^{2}-2 R z u}}\right|_{-1} ^{1}-\left.\frac{1}{2 R z^{2}}\left(\sqrt{R^{2}+z^{2}-2 R z u}+\frac{R^{2}+z^{2}}{\sqrt{R^{2}+z^{2}-2 R z u}}\right)\right|_{-1} ^{1}

 

=\frac{1}{R}\left(\frac{1}{|z-R|}-\frac{1}{z+R}\right)-\frac{1}{2 R z^{2}}\left[|z-R|-(z+R)+\left(R^{2}+z^{2}\right)\left(\frac{1}{|z-R|}-\frac{1}{z+R}\right)\right] .

(a)   \text { If } z>R ,

I=\frac{1}{R}\left(\frac{1}{z-R}-\frac{1}{z+R}\right)-\frac{1}{2 R z^{2}}\left[(z-R)-(z+R)+\left(R^{2}+z^{2}\right)\left(\frac{1}{z-R}-\frac{1}{z+R}\right)\right]

 

=\frac{1}{R}\left(\frac{2 R}{z^{2}-R^{2}}\right)-\frac{1}{2 R z^{2}}\left[-2 R+\left(R^{2}+z^{2}\right) \frac{2 R}{z^{2}-R^{2}}\right]=\frac{2}{z^{2}} .

So

E _{\text {ave }}=-\frac{1}{4 \pi \epsilon_{0}} \frac{q}{z^{2}} \hat{ z } ,

the same as the field at the center. By superposition the same holds for any collection of charges outside the sphere

(b)   \text { If } z<R ,

I=\frac{1}{R}\left(\frac{1}{R-z}-\frac{1}{z+R}\right)-\frac{1}{2 R z^{2}}\left[(R-z)-(z+R)+\left(R^{2}+z^{2}\right)\left(\frac{1}{R-z}-\frac{1}{z+R}\right)\right]

 

=\frac{1}{R}\left(\frac{2 z}{R^{2}-z^{2}}\right)-\frac{1}{2 R z^{2}}\left[-2 z+\left(R^{2}+z^{2}\right) \frac{2 z}{R^{2}-z^{2}}\right]=0 .

So

E _{\text {ave }}=0 .

By superposition the same holds for any collection of charges inside the sphere  .

3.3

Related Answered Questions