Question 12.8: (a) Show that the most general density matrix for a spin-1/2...

(a) Show that the most general density matrix for a spin-1/2 particle can be written in terms of three real numbers \left(a_{1}, a_{2}, a_{3}\right) :

\rho=\frac{1}{2}\left(\begin{array}{cc} \left(1+a_{3}\right) & \left(a_{1}-i a_{2}\right) \\ \left(a_{1}+i a_{2}\right) & \left(1-a_{3}\right) \end{array}\right)=\frac{1}{2}(1+ a \cdot \sigma ) ,                        (12.38)

where \sigma_{1}, \sigma_{2}, \sigma_{3} are the three Pauli matrices. Hint: It has to be hermitian, and its trace must be 1.

(b) In the literature, a is known as the Bloch vector. Show that ρ represents a pure state if and only if | a |=1, \text { and for a mixed state }| a |<1 Hint: Use Problem 12.6(c). Thus every density matrix for a spin-1/2 particle corresponds to a point in the Bloch sphere, of radius 1. Points on the surface are pure states, and points inside are mixed states.

(c) What is the probability that a measurement of S_{z} would return the value +\hbar / 2 , if the tip of the Bloch vector is at (i) the north pole ( a =(0,0,1)) \text {, (ii) the center of the sphere }( a =(0,0,0)) /latex] , (iii) the south pole [latex] ( a =(0,0,-1)) ?

(d) Find the spinor χ representing the (pure) state of the system, if the Bloch vector lies on the equator, at azimuthal angle ϕ.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The density matrix for a spin-1/2 state is a two by two matrix which can be written

\rho=\left(\begin{array}{ll} c_{1} & c_{2} \\ c_{3} & c_{4} \end{array}\right) .

for complex numbers c_{1}, c_{2}, c_{3}, c_{4} . Because the matrix is Hermitian we know that c_{1} \text { and } c_{4} must be real and c_2 and c_3 must be complex conjugates. Thus

\rho=\left(\begin{array}{cc} b_{1} & b_{2}-i b_{3} \\ b_{2}+i b_{3} & b_{4} \end{array}\right) .

for real numbers b_{1}, b_{2}, b_{3}, b_{4} In addition, since the trace is 1 we know that b_{4}=1-b_{1} . \text { Defining } a_{1}=2 b_{2} , a_{2}=2 b_{3}, \text { and } a_{3}=2 b_{1}-1 then gives

\rho=\frac{1}{2}\left(\begin{array}{cc} 1+a_{3} & a_{1}-i a_{2} \\ a_{1}+i a_{2} & 1-a_{3} \end{array}\right)=\frac{1}{2}\left[\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)+a_{1}\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)+a_{2}\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)+a_{3}\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)\right] .

=\frac{1}{2}\left(1+a_{1} \sigma_{x}+a_{2} \sigma_{y}+a_{3} \sigma_{z}\right)=\frac{1}{2}(1+ a \cdot \sigma) .

(b)

\operatorname{Tr}\left(\rho^{2}\right)=\operatorname{Tr}\left[\frac{1}{2}\left(\begin{array}{cc} 1+a_{3} & a_{1}-i a_{2} \\ a_{1}+i a_{2} & 1-a_{3} \end{array}\right) \frac{1}{2}\left(\begin{array}{cc} 1+a_{3} & a_{1}-i a_{2} \\ a_{1}+i a_{2} & 1-a_{3} \end{array}\right)\right] .

=\frac{1}{4} \operatorname{Tr}\left[\left(\begin{array}{cc} a_{1}^{2}+a_{2}^{2}+\left(1+a_{3}\right)^{2} & 2\left(a_{1}-i a_{2}\right) \\ 2\left(a_{1}+i a_{2}\right) & a_{1}^{2}+a_{2}^{2}+\left(1-a_{3}\right)^{2} \end{array}\right)\right]=\frac{1}{2}\left(1+| a |^{2}\right) .

By virtue of Problem 12.6c we see that | a | \leq 1 in order for this to be a density matrix, and it describes a pure state if and only if | a | = 1 .

(c) We can calculate the expectation value of S_z and, since there are only two possibilities,

\left\langle S_{z}\right\rangle=P_{+} \frac{\hbar}{2}+P_{-}\left(-\frac{\hbar}{2}\right)=P_{+} \frac{\hbar}{2}+\left(1-P_{+}\right)\left(-\frac{\hbar}{2}\right)=\hbar\left(P_{+}-\frac{1}{2}\right) .

This tells us the probability that a measurement will return spin up along z. Now

\left\langle S_{z}\right\rangle=\operatorname{Tr}\left(\frac{\hbar}{2} \sigma_{z} \rho\right)=\frac{\hbar}{2} \operatorname{Tr}\left[\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \frac{1}{2}\left(\begin{array}{cc} 1+a_{3} & a_{1}-i a_{2} \\ a_{1}+i a_{2} & 1-a_{3} \end{array}\right)\right] .

=\frac{\hbar}{4} \operatorname{Tr}\left[\left(\begin{array}{cc} 1+a_{3} & a_{1}-i a_{2} \\ -a_{1}-i a_{2} & -1+a_{3} \end{array}\right)\right]=\frac{\hbar}{2} a_{3} .

Combining these two results we have

P_{+}=\frac{1+a_{3}}{2} .

For the given directions we have: \text { (i) } P_{+}=1 \text {, (ii) } P_{+}=1 / 2, \text { and (iii) } P_{+}=0 \text {. }

(d) For a point on the equator at azimuthal angle \phi \text {, we have } a_{1}=\cos \phi, a_{2}=\sin \phi, a_{3}=0 \text {, so }

\rho=\frac{1}{2}\left(\begin{array}{cc} 1 & e^{-i \phi} \\ e^{i \phi} & 1 \end{array}\right) .

For a spinor \chi=\left(\begin{array}{l} a \\ b \end{array}\right) the density matrix is

\rho=\chi \chi^{\dagger}=\left(\begin{array}{l} a \\ b \end{array}\right)\left(\begin{array}{ll} a^{*} b^{*} \end{array}\right)=\left(\begin{array}{ll} |a|^{2} & a b^{*} \\ b a^{*} & |b|^{2} \end{array}\right) .

so, up to an arbitrary overall phase,

\chi=\frac{1}{\sqrt{2}}\left(\begin{array}{c} 1 \\ e^{i \phi} \end{array}\right) .

Related Answered Questions